Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 185(16): 2952-2960.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809570

RESUMEN

The currently circulating Omicron sub-variants are the SARS-CoV-2 strains with the highest number of known mutations. Herein, we found that human angiotensin-converting enzyme 2 (hACE2) binding affinity to the receptor-binding domains (RBDs) of the four early Omicron sub-variants (BA.1, BA.1.1, BA.2, and BA.3) follows the order BA.1.1 > BA.2 > BA.3 ≈ BA.1. The complex structures of hACE2 with RBDs of BA.1.1, BA.2, and BA.3 reveal that the higher hACE2 binding affinity of BA.2 than BA.1 is related to the absence of the G496S mutation in BA.2. The R346K mutation in BA.1.1 majorly affects the interaction network in the BA.1.1 RBD/hACE2 interface through long-range alterations and contributes to the higher hACE2 affinity of the BA.1.1 RBD than the BA.1 RBD. These results reveal the structural basis for the distinct hACE2 binding patterns among BA.1.1, BA.2, and BA.3 RBDs.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19 , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética
2.
Cell ; 185(4): 630-640.e10, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35093192

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues worldwide with many variants arising, some of which are variants of concern (VOCs). A recent VOC, omicron (B.1.1.529), which obtains a large number of mutations in the receptor-binding domain (RBD) of the spike protein, has risen to intense scientific and public attention. Here, we studied the binding properties between the human receptor ACE2 (hACE2) and the VOC RBDs and resolved the crystal and cryoelectron microscopy structures of the omicron RBD-hACE2 complex as well as the crystal structure of the delta RBD-hACE2 complex. We found that, unlike alpha, beta, and gamma, omicron RBD binds to hACE2 at a similar affinity to that of the prototype RBD, which might be due to compensation of multiple mutations for both immune escape and transmissibility. The complex structures of omicron RBD-hACE2 and delta RBD-hACE2 reveal the structural basis of how RBD-specific mutations bind to hACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Receptores Virales/química , SARS-CoV-2/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación/genética , Filogenia , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Electricidad Estática , Homología Estructural de Proteína
3.
Nat Immunol ; 23(3): 423-430, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35228696

RESUMEN

The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , COVID-19/inmunología , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Clonación Molecular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos , Humanos , Macaca mulatta , Ratones , Pruebas de Neutralización , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
4.
EMBO J ; 43(8): 1484-1498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467833

RESUMEN

Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos
5.
Proc Natl Acad Sci U S A ; 120(52): e2314193120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109549

RESUMEN

Currently, monoclonal antibodies (MAbs) targeting the SARS-CoV-2 receptor binding domain (RBD) of spike (S) protein are classified into seven classes based on their binding epitopes. However, most of these antibodies are seriously impaired by SARS-CoV-2 Omicron and its subvariants, especially the recent BQ.1.1, XBB and its derivatives. Identification of broadly neutralizing MAbs against currently circulating variants is imperative. In this study, we identified a "breathing" cryptic epitope in the S protein, named as RBD-8. Two human MAbs, BIOLS56 and IMCAS74, were isolated recognizing this epitope with broad neutralization abilities against tested sarbecoviruses, including SARS-CoV, pangolin-origin coronaviruses, and all the SARS-CoV-2 variants tested (Omicron BA.4/BA.5, BQ.1.1, and XBB subvariants). Searching through the literature, some more RBD-8 MAbs were defined. More importantly, BIOLS56 rescues the immune-evaded antibody, RBD-5 MAb IMCAS-L4.65, by making a bispecific MAb, to neutralize BQ.1 and BQ.1.1, thereby producing an MAb to cover all the currently circulating Omicron subvariants. Structural analysis reveals that the neutralization effect of RBD-8 antibodies depends on the extent of epitope exposure, which is affected by the angle of antibody binding and the number of up-RBDs induced by angiotensin-converting enzyme 2 binding. This cryptic epitope which recognizes non- receptor binding motif (non-RBM) provides guidance for the development of universal therapeutic antibodies and vaccines against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Anticuerpos Monoclonales , Epítopos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
6.
J Virol ; 98(5): e0045124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591877

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a wide range of hosts, including hippopotami, which are semi-aquatic mammals and phylogenetically closely related to Cetacea. In this study, we characterized the binding properties of hippopotamus angiotensin-converting enzyme 2 (hiACE2) to the spike (S) protein receptor binding domains (RBDs) of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs). Furthermore, the cryo-electron microscopy (cryo-EM) structure of the SARS-CoV-2 PT S protein complexed with hiACE2 was resolved. Structural and mutational analyses revealed that L30 and F83, which are specific to hiACE2, played a crucial role in the hiACE2/SARS-CoV-2 RBD interaction. In addition, comparative and structural analysis of ACE2 orthologs suggested that the cetaceans may have the potential to be infected by SARS-CoV-2. These results provide crucial molecular insights into the susceptibility of hippopotami to SARS-CoV-2 and suggest the potential risk of SARS-CoV-2 VOCs spillover and the necessity for surveillance. IMPORTANCE: The hippopotami are the first semi-aquatic artiodactyl mammals wherein SARS-CoV-2 infection has been reported. Exploration of the invasion mechanism of SARS-CoV-2 will provide important information for the surveillance of SARS-CoV-2 in hippopotami, as well as other semi-aquatic mammals and cetaceans. Here, we found that hippopotamus ACE2 (hiACE2) could efficiently bind to the RBDs of the SARS-CoV-2 prototype (PT) and variants of concern (VOCs) and facilitate the transduction of SARS-CoV-2 PT and VOCs pseudoviruses into hiACE2-expressing cells. The cryo-EM structure of the SARS-CoV-2 PT S protein complexed with hiACE2 elucidated a few critical residues in the RBD/hiACE2 interface, especially L30 and F83 of hiACE2 which are unique to hiACE2 and contributed to the decreased binding affinity to PT RBD compared to human ACE2. Our work provides insight into cross-species transmission and highlights the necessity for monitoring host jumps and spillover events on SARS-CoV-2 in semi-aquatic/aquatic mammals.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Artiodáctilos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Artiodáctilos/virología , Betacoronavirus/genética , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19/virología , COVID-19/metabolismo , Microscopía por Crioelectrón , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética
7.
J Immunol ; 209(6): 1138-1145, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940634

RESUMEN

IL-17 contributes to the pathogenesis of certain autoimmune diseases, but conversely is essential for host defense against fungi. Ab-based biologic drugs that neutralize IL-17 are effective in autoimmunity but can be accompanied by adverse side effects. Candida albicans is a commensal fungus that is the primary causative agent of oropharyngeal and disseminated candidiasis. Defects in IL-17 signaling cause susceptibility to candidiasis in mice and humans. A key facet of IL-17 receptor signaling involves RNA-binding proteins, which orchestrate the fate of target mRNA transcripts. In tissue culture models we showed that the RNA-binding protein AT-rich interaction domain 5A (Arid5a) promotes the stability and/or translation of multiple IL-17-dependent mRNAs. Moreover, during oropharyngeal candidiasis, Arid5a is elevated within the oral mucosa in an IL-17-dependent manner. However, the contribution of Arid5a to IL-17-driven events in vivo is poorly defined. In this study, we used CRISPR-Cas9 to generate mice lacking Arid5a. Arid5a -/- mice were fully resistant to experimental autoimmune encephalomyelitis, an autoimmune setting in which IL-17 signaling drives pathology. Surprisingly, Arid5a -/- mice were resistant to oropharyngeal candidiasis and systemic candidiasis, similar to immunocompetent wild-type mice and contrasting with mice defective in IL-17 signaling. Therefore, Arid5a-dependent signals mediate pathology in autoimmunity and yet are not required for immunity to candidiasis, indicating that selective targeting of IL-17 signaling pathway components may be a viable strategy for development of therapeutics that spare IL-17-driven host defense.


Asunto(s)
Productos Biológicos , Candidiasis , Encefalomielitis Autoinmune Experimental , Animales , Autoinmunidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Interleucina-17/metabolismo , Ratones , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Interleucina-17/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Virol ; 96(17): e0081422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000849

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted between humans and minks, and some mutations in the spike (S) protein, especially in the receptor-binding domain (RBD), have been identified in mink-derived viruses. Here, we examined binding of the mink angiotensin-converting enzyme 2 (ACE2) receptor to mink-derived and important human-originating variants, and we demonstrated that most of the RBD variants increased the binding affinities to mink ACE2 (mkACE2). Cryo-electron microscopy structures of the mkACE2-RBD Y453F (with a Y-to-F change at position 453) and mkACE2-RBD F486L complexes helped identify the key residues that facilitate changes in mkACE2 binding affinity. Additionally, the data indicated that the Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and human vaccinated sera efficiently prevented infection of human cells by pseudoviruses expressing Y453F, F486L, or N501T RBD. Our findings provide an important molecular mechanism for the rapid adaptation of SARS-CoV-2 in minks and highlight the potential influence of the main mink-originating variants for humans. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a broad range of hosts. Mink-derived SARS-CoV-2 can transmit back to humans. There is an urgent need to understand the binding mechanism of mink-derived SARS-CoV-2 variants to mink receptor. In this study, we identified all mutations in the receptor-binding domain (RBD) of spike (S) protein from mink-derived SARS-CoV-2, and we demonstrated the enhanced binding affinity of mink angiotensin-converting enzyme 2 (ACE2) to most of the mink-derived RBD variants as well as important human-originating RBD variants. Cryo-electron microscopy structures revealed that the Y453F and F486L mutations enhanced the binding forces in the interaction interface. In addition, Y453F and F486L mutations reduced the binding affinities to some human monoclonal antibodies, and the SARS-CoV-2 pseudoviruses with Y453F, F486L, or N501T mutations were neutralized by human vaccinated sera. Therefore, our results provide valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19/veterinaria , Visón , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Monoclonales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética
9.
FASEB J ; 36(3): e22180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129860

RESUMEN

P75 pan-neurotrophin receptor (p75NTR) is an important receptor for the role of neurotrophins in survival and death of neurons during development and after nerve injury. Our previous research found that the precursor of brain-derived neurotrophic factor (proBDNF) regulates pain as an inflammatory mediator. The current understanding of the role of proBDNF/p75NTR signaling pathway in inflammatory arthritis pain and rheumatoid arthritis (RA) is unclear. We recruited 20 RA patients, 20 healthy donors (HDs), and 10 osteoarthritis (OA) patients. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of proBDNF and p75NTR in synovial membrane were performed and evaluated. We next examined the mRNA and protein expression of proBDNF/p75NTR signaling pathway in peripheral blood mononuclear cells (PBMCs) and synovial tissue. ELISA and flow cytometry were assessed between the blood of RA patients and HD. To induce RA, collagen-induced arthritis (CIA) were induced in mice. We found over-synovitis of RA synovial membrane compared to OA controls in histologic sections. P75NTR and sortilin mRNA, and proBDNF protein level were significantly increased in PBMCs of RA patients compared with the HD. Consistently, ELISA showed that p75NTR, sortilin, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10) levels in the serum of RA patients were increased compared with HD and p75NTR, sortilin were positively correlated with Disease Activity Score in 28 joints (DAS28). In addition, using flow cytometry we showed that the increased levels of proBDNF and p75NTR characterized in CD4+ and CD8+ T cells of RA patients were subsequently reversed with methotrexate (MTX) treatment. Furthermore, we found pathological changes, inflammatory pain, upregulation of the mRNA and protein expression of proBDNF/p75NTR signaling pathway, and upregulation of inflammatory cytokines in spinal cord using a well-established CIA mouse model. We showed intravenous treatment of recombinant p75ECD-Fc that biologically blocked all inflammatory responses and relieved inflammatory pain of animals with CIA. Our findings showed the involvement of proBDNF/p75NTR pathway in the RA inflammatory response and how blocking it with p75ECD-Fc may be a promising therapeutic treatment for RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Femenino , Humanos , Interleucinas/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , Membrana Sinovial/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/sangre
10.
J Nat Prod ; 85(2): 327-336, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35084181

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 5 million deaths worldwide to date. Due to the limited therapeutic options so far available, target-based virtual screening with LC/MS support was applied to identify the novel and high-content compounds 1-4 with inhibitory effects on SARS-CoV-2 in Vero E6 cells from the plant Dryopteris wallichiana. These compounds were also evaluated against SARS-CoV-2 in Calu-3 cells and showed unambiguous inhibitory activity. The inhibition assay of targets showed that compounds 3 and 4 mainly inhibited SARS-CoV-2 3CLpro, with effective Kd values. Through docking and molecular dynamics modeling, the binding site is described, providing a comprehensive understanding of 3CLpro and interactions for 3, including hydrogen bonds, hydrophobic bonds, and the spatial occupation of the B ring. Compounds 3 and 4 represent new, potential lead compounds for the development of anti-SARS-CoV-2 drugs. This study has led to the development of a target-based virtual screening method for exploring the potency of natural products and for identifying natural bioactive compounds for possible COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Floroglucinol/farmacología , SARS-CoV-2/efectos de los fármacos , Terpenos/farmacología , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cristalografía por Rayos X , Sistemas de Liberación de Medicamentos , Dryopteris/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Estructura Molecular , Realidad Virtual
13.
Artículo en Inglés | MEDLINE | ID: mdl-28607012

RESUMEN

Osthole is a natural coumarin that exhibits wide biological and pharmacological activities such as neuroprotective, osteogenic, immunomodulation, antitumor, and anti-inflammatory effects. In this study, we investigated the antifungal effects of osthole in vitro A checkerboard microdilution assay showed that osthole has significant synergistic effect with fluconazole against fluconazole-resistant Candida albicans Similar results were obtained from a growth curve assay. Meanwhile, XTT reduction assay demonstrated the synergism of fluconazole and osthole against C. albicans biofilm formation. Microarray results showed that the expression of genes involved in the oxidation-reduction process, energy metabolism, and transportation changed significantly after the combined treatment with fluconazole and osthole, and further results showed that endogenous reactive oxygen species (ROS) was significantly increased in the combination group. In conclusion, these results demonstrate the synergism of fluconazole and osthole against fluconazole-resistant C. albicans and indicate that endogenous ROS augmentation might contribute to the synergism of fluconazole and osthole.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Cumarinas/farmacología , Fluconazol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Candida albicans/genética , Candidiasis/microbiología , Farmacorresistencia Fúngica/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos
14.
Mycopathologia ; 181(1-2): 17-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26384671

RESUMEN

The echinocandin family of drugs is well characterized for antifungal function that inhibits ß-D-glucan synthesis. The aim of this work was to study whether micafungin, a member of the echinocandin family, elicits additional activities that prime the host's immune response. We found that in a Galleria mellonella model, prophylactic treatment with micafungin extended the life of Staphylococcus aureus-infected larvae (a pathogen to which the drug demonstrates no direct antimicrobial activity) compared to insects that did not receive micafungin (P < 0.05). The inhibition of pathogens in the G. mellonella infection model was characterized by a 2.43-fold increase in hemocyte density, compared to larvae inoculated with PBS. In a murine model where animals were provided micafungin prophylaxis 3 days prior to macrophage collection, macrophages were found associated with an average 0.9 more fungal cells per macrophage as compared to saline-treated animals. Interestingly, micafungin-stimulated macrophages killed 11.6 ± 6.2 % of fungal cells compared to 3.8 ± 2.4 % of macrophages from saline-treated animals. The prophylactic provision of micafungin prior to Candida albicans infection was characterized by an increase in the proinflammatory cytokines CXCL13 and SPP1 by 11- and 6.9-fold, respectively. In conclusion, micafungin demonstrated the ability to stimulate phagocytic cells and promote an immune response that can inhibit microbial infections.


Asunto(s)
Equinocandinas/administración & dosificación , Equinocandinas/farmacología , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/farmacología , Lipopéptidos/administración & dosificación , Lipopéptidos/farmacología , Animales , Candida albicans/inmunología , Candida albicans/fisiología , Modelos Animales de Enfermedad , Lepidópteros , Macrófagos/inmunología , Macrófagos/microbiología , Micafungina , Ratones , Viabilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Análisis de Supervivencia , Resultado del Tratamiento
15.
J Infect Dis ; 211(2): 298-305, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25114160

RESUMEN

A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans-C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella-C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens.


Asunto(s)
Caenorhabditis elegans/microbiología , Cryptococcus neoformans/patogenicidad , Mariposas Nocturnas/microbiología , Factores de Virulencia/análisis , Animales , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Pruebas Genéticas , Ratones , Factores de Virulencia/genética
16.
Indian J Microbiol ; 56(2): 214-218, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27570314

RESUMEN

Nitric oxide (NO) is a small molecule with a wide range of biological activities in mammalian and bacteria. However, the role of NO in fungi, especially Candida albicans, is not clear. In this study, we confirmed the generation of endogenous NO in C. albicans, and found that the production of endogenous NO in C. albicans was associated with nitric oxide synthase pathway. Our results further indicated that the production of endogenous NO in C. albicans was reduced under oxidative stress such as menadione or H2O2 treatment. Meanwhile, exogenous NO donor, sodium nitroprusside (SNP), synergized with H2O2 against C. albicans. Interestingly, SNP could inhibit the antifungal effect of azoles against C. albicans in vitro, suggesting that NO might be involved in the resistance of C. albicans to antifungals. Collectively, this study demonstrated the production of endogenous NO in C. albicans, and indicated that NO may play an important role in the response of C. albicans to oxidative stress and azoles.

17.
Med Mycol ; 53(3): 302-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25792759

RESUMEN

Genome plasticity is a hallmark of Candida albicans, and it has been suggested that it generates numerical and structural genomic variations as a means of adaptation. In this study, we used array based comparative genomic hybridization technology and the quantitative real time PCR to investigate the mechanisms by which the following strains obtained by genetic manipulation, CaLY188, CaLY350, CaLY190 and CaLY191, were resistant to antifungal azoles. All four showed trisomy of chromosome R and resistance to azoles. Serial passage of CaLY188 in drug-free medium resulted in chromosome loss, causing chromosome R disomy and loss of azole resistance. Thus we proposed that trisomy of chromosome R contributes to azole resistance.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Cromosomas Fúngicos , Farmacorresistencia Fúngica , Triazoles/farmacología , Trisomía , Pase Seriado
18.
Mycopathologia ; 180(3-4): 159-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26003722

RESUMEN

Penicillium marneffei, the only known dimorphic and pathogenic species in the genus of Penicillium, is responsible for severe to deadly infection in immunocompromised patients. In this study, P. marneffei was able to infect the greater wax moth Galleria mellonella. The increasing inoculum doses of P. marneffei cells resulted in greater larval mortality, and the larval mortality rate also depended on the incubation temperature after P. marneffei infection and different P. marneffei strains. Moreover, the phagocytosis of hemocytes to P. marneffei was investigated, and it showed that the phagocytosis was increasing during the infection. These results demonstrated that G. mellonella can be effectively used to facilitate the in vivo study of P. marneffei infection and hemocytes are the key component of the larvae's immune defenses.


Asunto(s)
Modelos Animales de Enfermedad , Lepidópteros/microbiología , Penicillium/crecimiento & desarrollo , Animales , Hemocitos/inmunología , Hemocitos/microbiología , Larva/microbiología , Lepidópteros/inmunología , Fagocitosis , Análisis de Supervivencia , Temperatura
19.
Antimicrob Agents Chemother ; 58(4): 2344-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24514088

RESUMEN

Pterostilbene (PTE) is a stilbene-derived phytoalexin that originates from several natural plant sources. In this study, we evaluated the activity of PTE against Candida albicans biofilms and explored the underlying mechanisms. In 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assays, biofilm biomass measurement, confocal laser scanning microscopy, and scanning electron microscopy, we found that ≤16 µg/ml PTE had a significant effect against C. albicans biofilms in vitro, while it had no fungicidal effect on planktonic C. albicans cells, which suggested a unique antibiofilm effect of PTE. Then we found that PTE could inhibit biofilm formation and destroy the maintenance of mature biofilms. At 4 µg/ml, PTE decreased cellular surface hydrophobicity (CSH) and suppressed hyphal formation. Gene expression microarrays and real-time reverse transcription-PCR showed that exposure of C. albicans to 16 µg/ml PTE altered the expression of genes that function in morphological transition, ergosterol biosynthesis, oxidoreductase activity, and cell surface and protein unfolding processes (heat shock proteins). Filamentation-related genes, especially those regulated by the Ras/cyclic AMP (cAMP) pathway, including ECE1, ALS3, HWP1, HGC1, and RAS1 itself, were downregulated upon PTE treatment, indicating that the antibiofilm effect of PTE was related to the Ras/cAMP pathway. Then, we found that the addition of exogenous cAMP reverted the PTE-induced filamentous growth defect. Finally, with a rat central venous catheter infection model, we confirmed the in vivo activity of PTE against C. albicans biofilms. Collectively, PTE had strong activities against C. albicans biofilms both in vitro and in vivo, and these activities were associated with the Ras/cAMP pathway.


Asunto(s)
Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Estilbenos/farmacología , Estilbenos/uso terapéutico , Animales , Candida albicans/metabolismo , Femenino , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Ratas , Ratas Sprague-Dawley
20.
Med ; 5(5): 401-413.e4, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38574739

RESUMEN

BACKGROUND: The recently circulating Omicron variants BA.2.86 and JN.1 were identified with more than 30 amino acid changes on the spike protein compared to BA.2 or XBB.1.5. This study aimed to comprehensively assess the immune escape potential of BA.2.86, JN.1, EG.5, and EG.5.1. METHODS: We collected human and murine sera to evaluate serological neutralization activities. The participants received three doses of coronavirus disease 2019 (COVID-19) vaccines or a booster dose of the ZF2022-A vaccine (Delta-BA.5 receptor-binding domain [RBD]-heterodimer immunogen) or experienced a breakthrough infection (BTI). The ZF2202-A vaccine is under clinical trial study (ClinicalTrials.gov: NCT05850507). BALB/c mice were vaccinated with a panel of severe acute respiratory syndrome coronavirus 2 RBD-dimer proteins. The antibody evasion properties of these variants were analyzed with 41 representative human monoclonal antibodies targeting the eight RBD epitopes. FINDINGS: We found that BA.2.86 had less neutralization evasion than EG.5 and EG.5.1 in humans. The ZF2202-A booster induced significantly higher neutralizing titers than BTI. Furthermore, BA.2.86 and JN.1 exhibited stronger antibody evasion than EG.5 and EG.5.1 on RBD-4 and RBD-5 epitopes. Compared to BA.2.86, JN.1 further lost the ability to bind to several RBD-1 monoclonal antibodies and displayed further immune escape. CONCLUSIONS: Our data showed that the currently dominating sub-variant, JN.1, showed increased immune evasion compared to BA.2.86 and EG.5.1, which is highly concerning. This study provides a timely risk assessment of the interested sub-variants and the basis for updating COVID-19 vaccines. FUNDING: This work was funded by the National Key R&D Program of China, the National Natural Science Foundation of China, the Beijing Life Science Academy, the Bill & Melinda Gates Foundation, and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (CPSF).


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , COVID-19 , Ratones Endogámicos BALB C , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Humanos , Animales , Anticuerpos Monoclonales/inmunología , SARS-CoV-2/inmunología , Ratones , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/prevención & control , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Masculino , Sueros Inmunes/inmunología , Adulto , Evasión Inmune , Pruebas de Neutralización , Epítopos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA