Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Inorg Chem ; 63(17): 7937-7945, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38629190

RESUMEN

The urea-assisted water splitting not only enables a reduction in energy consumption during hydrogen production but also addresses the issue of environmental pollution caused by urea. Doping heterogeneous atoms in Ni-based electrocatalysts is considered an efficient means for regulating the electronic structure of Ni sites in catalytic processes. However, the current methodologies for synthesizing heteroatom-doped Ni-based electrocatalysts exhibit certain limitations, including intricate experimental procedures, prolonged reaction durations, and low product yield. Herein, Fe-doped NiO electrocatalysts were successfully synthesized using a rapid and facile solution combustion method, enabling the synthesis of 1.1107 g within a mere 5 min. The incorporation of iron atoms facilitates the modulation of the electronic environment around Ni atoms, generating a substantial decrease in the Gibbs free energy of intermediate species for the Fe-NiO catalyst. This modification promotes efficient cleavage of C-N bonds and consequently enhances the catalytic performance of UOR. Benefiting from the tunability of the electronic environment around the active sites and its efficient electron transfer, Fe-NiO electrocatalysts only needs 1.334 V to achieve 50 mA cm-2 during UOR. Moreover, Fe-NiO catalysts were integrated into a dual electrode urea electrolytic system, requiring only 1.43 V of cell voltage at 10 mA cm-2.

2.
Angew Chem Int Ed Engl ; 62(36): e202308523, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37370248

RESUMEN

Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2 ) reduction half-reaction and the water (H2 O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust -C=C- bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron-hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2 O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 µmol g-1 h-1 with about 100 % selectivity) and oxygen (O2 ) evolution (90.2 µmol g-1 h-1 ) among all the porous catalysts in CO2 reduction with H2 O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure-function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.

3.
Angew Chem Int Ed Engl ; 60(29): 16019-16026, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33871146

RESUMEN

Developing nano-ferroelectric materials with excellent piezoelectric performance for piezocatalysts used in water splitting is highly desired but also challenging, especially with respect to reaching large piezo-potentials that fully align with required redox levels. Herein, heteroepitaxial strain in BaTiO3 nanoparticles with a designed porous structure is successfully induced by engineering their surface reconstruction to dramatically enhance their piezoelectricity. The strain coherence can be maintained throughout the nanoparticle bulk, resulting in a significant increase of the BaTiO3 tetragonality and thus its piezoelectricity. Benefiting from high piezoelectricity, the as-synthesized blue-colored BaTiO3 nanoparticles possess a superb overall water-splitting activity, with H2 production rates of 159 µmol g-1 h-1 , which is almost 130 times higher than that of the pristine BaTiO3 nanoparticles. Thus, this work provides a generic approach for designing highly efficient piezoelectric nanomaterials by strain engineering that can be further extended to various other perovskite oxides, including SrTiO3 , thereby enhancing their potential for piezoelectric catalysis.

4.
Angew Chem Int Ed Engl ; 58(42): 15076-15081, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31404487

RESUMEN

Piezocatalysis, converting mechanical vibration into chemical energy, has emerged as a promising candidate for water-splitting technology. However, the efficiency of the hydrogen production is quite limited. We herein report well-defined 10 nm BaTiO3 nanoparticles (NPs) characterized by a large electro-mechanical coefficient which induces a high piezoelectric effect. Atomic-resolution high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning probe microscopy (SPM) suggests that piezoelectric BaTiO3 NPs display a coexistence of multiple phases with low energy barriers and polarization anisotropy which results in a high electro-mechanical coefficient. Landau free energy modeling also confirms that the greatly reduced polarization anisotropy facilitates polarization rotation. Employing the high piezoelectric properties of BaTiO3 NPs, we demonstrate an overall water-splitting process with the highest hydrogen production efficiency hitherto reported, with a H2 production rate of 655 µmol g-1 h-1 , which could rival excellent photocatalysis system. This study highlights the potential of piezoelectric catalysis for overall water splitting.

5.
Phys Chem Chem Phys ; 19(14): 9392-9401, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28327717

RESUMEN

The development of inexpensive visible-light-driven photocatalysts is an important prerequisite for realizing the industrial application of photocatalysis technology. In this paper, an earth-abundant FeAl2O4 photocatalyst is prepared via facile solution combustion synthesis. Density functional theory and the scanning Kelvin probe technique are employed to ascertain the positions of the energy bands and the Fermi level. Phenol is taken as a model pollutant to evaluate the photocatalytic activity of FeAl2O4. The scavenger experiment results, ˙OH-trapping fluorescence technique, and electron spin resonance measurements confirm that the superoxide anion radical is the main active species generated in the photocatalytic process, which also further corroborates the proposed electronic structure of FeAl2O4. The degradation experiments and O2 temperature programmed desorption results over various samples verify that the crystallinity degree is a more important factor than the oxygen adsorption ability in determining photocatalytic activity.

6.
Chemistry ; 21(28): 10149-59, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26043440

RESUMEN

Heterojunctions of g-C3 N4 /Al2 O3 (g-C3 N4 =graphitic carbon nitride) are constructed by an in situ one-pot hydrothermal route based on the development of photoactive γ-Al2 O3 semiconductor with a mesoporous structure and a high surface area (188 m(2) g(-1) ) acting as electron acceptor. A structure modification function of g-C3 N4 for Al2 O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone-pair electrons of the N atoms. The as-synthesized heterojunctions exhibit much higher photocatalytic activity than pure g-C3 N4 . The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g-C3 N4 /Al2 O3 under visible-light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g-C3 N4 . The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability.

7.
J Colloid Interface Sci ; 660: 961-973, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38281477

RESUMEN

High-performance photocatalysts for catalytic reduction of CO2 are largely impeded by inefficient charge separation and surface activity. Reasonable design and efficient collaboration of multiple active sites are important for attaining high reactivity and product selectivity. Herein, Cu-Cu2O and Ag nanoparticles are confined as dual sites for assisting CO2 photoreduction to CH4 on TiO2. The introduction of Cu-Cu2O leads to an all-solid-state Z-scheme heterostructure on the TiO2 surface, which achieves efficient electron transfer to Cu2O and adsorption and activation of CO2. The confined nanometallic Ag further enhances the carrier's separation efficiency, promoting the conversion of activated CO2 molecules to •COOH and further conversion to CH4. Particularly, this strategy is highlighted on the TiO2 system for a photocatalytic reduction reaction of CO2 and H2O with a CH4 generation rate of 62.5 µmol∙g-1∙h-1 and an impressive selectivity of 97.49 %. This work provides new insights into developing robust catalysts through the artful design of synergistic catalytic sites for efficient photocatalytic CO2 conversion.

8.
Adv Mater ; 35(42): e2303018, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37408522

RESUMEN

Reversible control of ferroelectric polarization is essential to overcome the heterocatalytic kinetic limitation. This can be achieved by creating a surface with switchable electron density; however, owing to the rigidity of traditional ferroelectric oxides, achieving polarization reversal in piezocatalytic processes remains challenging. Herein, sub-nanometer-sized Hf0.5 Zr0.5 O2 (HZO) nanowires with a polymer-like flexibility are synthesized. Oxygen K-edge X-ray absorption spectroscopy and negative spherical aberration-corrected transmission electron microscopy reveal an orthorhombic (Pca21 ) ferroelectric phase of the HZO sub-nanometer wires (SNWs). The ferroelectric polarization of the flexible HZO SNWs can be easily switched by slight external vibration, resulting in dynamic modulation of the binding energy of adsorbates and thus breaking the "scaling relationship" during piezocatalysis. Consequently, the as-synthesized ultrathin HZO nanowires display superb water-splitting activity, with H2 production rate of 25687 µmol g-1  h-1 under 40 kHz ultrasonic vibration, which is 235 and 41 times higher than those of non-ferroelectric hafnium oxides and rigid BaTiO3 nanoparticles, respectively. More strikingly, the hydrogen production rates can reach 5.2 µmol g-1  h-1 by addition of stirring exclusively.

9.
Chem Commun (Camb) ; 58(83): 11649-11652, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36129144

RESUMEN

Inducing amorphous components into Al2O3 leads to elongation of the Al-O bond and the formation of oxygen vacancies, which makes Al2O3 an independent photocatalyst for CO2 adsorption and reduction. The generation rate of CO can reach 36.5 µmol g-1 h-1, which is 6.5 times that of P25 TiO2.

10.
J Colloid Interface Sci ; 606(Pt 2): 1477-1487, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500152

RESUMEN

A well-designed photocatalyst with excellent activity and selectivity is crucial for photocatalytic CO2 conversion and utilization. TiO2 is one of the most promising photocatalysts. However, its excessive surface oxidation potential and insufficient surface active sites inhibit its activity and photocatalytic CO2 reduction selectivity. In this work, highly dispersed Bi2Ti2O7 was introduced into defective TiO2 to adjust its oxidation potential and the generation of radicals, further inhibiting reverse reactions during the photocatalytic conversion of CO2. Moreover, an in situ topochemical reaction etching route was designed, which achieved defective surfaces, a contacted heterophase interface, and an efficient electron transfer path. The optimized heterophase photocatalyst exhibited 93.9% CH4 selectivity at a photocatalytic rate of 6.8 µmol·g-1·h-1, which was 7.9 times higher than that of P25. This work proposes a feasible approach to fabricating photocatalysts with well-designed band structures, highly dispersed heterophase interfaces, and sufficient surface active sites to effectively modulate the selectivity and activity of CO2 photoreduction by manipulating the reaction pathways.


Asunto(s)
Dióxido de Carbono , Radical Hidroxilo , Catálisis , Oxidación-Reducción , Titanio
11.
Chem Commun (Camb) ; 57(76): 9676-9679, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34555138

RESUMEN

In this paper, it is found that the preferential growth of secondary {117} facets of Bi24O31Br10 into dominant facets would lead to higher photocatalytic activity, although the original main {213} facet has a stronger molecular oxygen adsorption ability, which illustrates that the charge separation efficiency induced by dominant/secondary facet control plays a more important role than that of O2 adsorptive performance in improving activity.

12.
Nanoscale ; 13(4): 2585-2592, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33480957

RESUMEN

The main process of carbon dioxide (CO2) photoreduction is that excited electrons are transported to surface active sites to reduce adsorbed CO2 molecules. Obviously, electron transfer to the active site is one of the key steps in this process. However, current catalysts for CO2 adsorption, activation, and electron reduction occur in different locations, which greatly reduce the efficiency of photocatalysis. Herein, through a spontaneous chemical redox approach, the plasmonic photocatalysts of Au-BiOCl-OV with enhanced interfacial interaction were fabricated for visible light CO2 reduction through the simultaneous adsorption, activation and in situ reduction of CO2 without a sacrificial agent. By loading gold (Au) on the oxygen vacancy (OV), Au and BiOCl-OV formed a direct and tight interface contact, whose fine structure was confirmed by SEM, TEM, EPR and XPS, which not only effectively boosts the light utilization efficiency and the light carrier separation ability, but also can simultaneously adsorb, activate and in situ reduce carbon dioxide for highly efficient visible light photocatalysis. Thanks to the synergistic influence of Au and OV, Au-BiOCl-OV exhibits excellent photocatalytic performance without sacrificial agent and outstanding stability with a high CO and CH4 production yield, reaching 4.85 µmol g-1 h-1, which were 2.8 times higher than C-Au-BiOCl-OV (obtained by traditional NaBH4 reduction). This study proposes a new strategy for the production of high-performance collaborative catalysis in photocatalytic CO2 reduction.

13.
J Hazard Mater ; 401: 123262, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32629345

RESUMEN

Constructing heterojunctions would result in the change of valence band position, which is an important factor determining the oxidative ability of photo-induced holes, has received scant attention. In this paper, ß-Bi2O3/Bi2O2CO3 composites with different ratios were obtained via ionic-liquid-assisted solvothermal and in-situ calcination processes. UV-vis DRS, Mott-Schottky test, and Kelvin probe measurement showed the change of band gaps of ß-Bi2O3 and Bi2O2CO3 before and after heterojunction formation. SPV, ESR, photocurrent, and scavenger experiments identified the separation efficiency of photo-generated electrons and holes, as well as the active species generated in the photocatalytic process. The photocatalytic mechanism was investigated by the degradation of Rhodamine B (RhB) upon visible-light and simulated sunlight, respectively. The results demonstrated that ß-Bi2O3/Bi2O2CO3 heterojunctions possessed enhanced separation efficiency and higher degradation ability than the individuals under visible-light irradiation due to effective electron transfer. However, lower performance under simulated sunlight was observed, although their separation efficiency remained high. The decisive reason for this was that the up-shift of valence band of Bi2O2CO3 induced by hybridization and the transition of holes from VB of Bi2O2CO3 to that of ß-Bi2O3 with more negative potential decreased the oxidative ability of holes, which surpassed the positive influence of enhanced separation efficiency.

14.
Adv Colloid Interface Sci ; 284: 102275, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32987294

RESUMEN

Photocatalysis has attracted wide attention in eliminating volatile organic compounds (VOCs). This paper pays attention to the relationship between structure and performance of photocatalysts based on the fact that catalytic reactions arise on the surface of catalysts and the interface structure of photocatalysts plays key role in transfer efficiency of charges carriers. This review summarizes various surface/interface designs including unsaturated coordination such as oxygen vacancies, surface halogenations, and heterojunctions, homojunctions, facets, etc., as well as the application in photocatalytic degradation of VOCs. This paper reviews the influence of surface and interface properties of materials on VOCs molecules, effective strategies to promote the decomposition of VOCs from the perspectives of VOCs activation, reaction barrier etc., and presents various methods of photocatalyst design appropriately. The degradation path of highly toxic benzene VOCs are also summarized. In addition, the possible problems and suggestions for photocatalytic degradation of VOCs are proposed.

15.
ACS Appl Mater Interfaces ; 12(19): 21761-21771, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32298073

RESUMEN

Methane is a greenhouse gas that contributes to global warming. Hence, effectively removing the low concentration (<1000 ppm) of methane in the environment is an issue that deserves research in the field of catalysis. In this study, oxygen-magnesium bivacancies are simultaneously imbedded into MgO by designing an in situ reduction combustion atmosphere for oxygen release and substituting magnesium with carbon to induce the formation of magnesium vacancies. The DFT calculations reveal that the surface electron density of MgO is improved by the oxygen vacancy structure and the substitution of Mg by C in bulk; this accelerates migration of the charge from the material surface to the adsorbed oxygen species, which leads to abundant surface peroxide species that enable activation and oxidation of methane at a low temperature (below 200 °C). This work could provide a concept for developing non-noble or transition metal oxides for low-temperature activation and conversion of alkanes in the thermocatalytic field through reactive oxygen species.

16.
Nanoscale ; 10(26): 12315-12321, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29942955

RESUMEN

As emerging noble metal-free co-catalysts, transition metal phosphides have been employed to improve photocatalytic H2 production activity. Herein, the metallicity of CoP, as a representative phosphide, and the Schottky effect between CoP and g-C3N4 are confirmed via theoretical calculations. Then, a 2D/2D structure is designed to enlarge the Schottky effect between the interfaces, for which the apparent quantum efficiency of the photocatalytic H2 evolution is 2.1 times that of corresponding 0D/2D heterojunctions. The morphology, microstructure, chemical composition, and physical nature of pristine CoP, g-C3N4, and the composites are characterized in order to investigate the dynamic behavior of photo-induced charge carriers between CoP and g-C3N4. Based on the measurements, it is proposed that the efficient electron collecting effect of CoP can be attributed to the superior interfacial contact and Schottky junction between the CoP and g-C3N4 interfaces. Furthermore, the excellent electrical conductivity and low overpotential of CoP make water reduction easier. This work demonstrates that the construction of a 2D/2D structure based on a suitable Fermi level is crucial for enhancing the Schottky effect of transition metal phosphides.

17.
Nat Commun ; 8: 13907, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045015

RESUMEN

Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 µmol h-1 g-1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1-xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.

18.
ACS Appl Mater Interfaces ; 9(14): 12687-12693, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28339179

RESUMEN

Seeking a simple and moderate route to generate reactive oxygen species (ROS) for antibiosis is of great interest and challenge. This work demonstrates that molecule transition and electron rearrangement processes can directly occur only through chemisorption interaction between the adsorbed O2 and high-energy {111} facet-exposed MgO with abundant surface oxygen vacancies (SOVs), hence producing singlet oxygen and superoxide anion radicals without light irradiation. These ROS were confirmed by electron paramagnetic resonance, in situ Raman, and scavenger experiments. Furthermore, heat plays a crucial role for the electron transfer process to accelerate the formation of ·O2-, which is verified by temperature kinetic experiments of nitro blue tetrazolium reduction in the dark. Therefore, the presence of oxygen vacancy can be considered as an intensification of the activation process. The designed MgO is acquired in one step via constructing a reduction atmosphere during the combustion reaction process, which has an ability similar to that of noble metal Pd to activate molecular oxygen and can be used as an effective bacteriocide in the dark.

19.
Sci Rep ; 6: 24918, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27114050

RESUMEN

Surface defect of nanomaterials is an important physical parameter which significantly influences their physical and chemical performances. In this work, high concentration of surface oxygen vancancies (SOVs) are successfully introduced on {001} facets exposed BiOBr nanosheets via a simple surface modification using polybasic carboxylic acids. The chelation interaction between carboxylic acid anions and Bi(3+) results in the weakness of Bi-O bond of BiOBr. Afterwards, under visible-light irradiation, the oxygen atoms would absorb the photo-energy and then be released from the surface of BiOBr, leaving SOVs. The electron spin resonance (ESR), high-resolution transmission electron microscopy (HRTEM), and UV-vis diffuse reflectance spectra (DRS) measurements confirm the existence of SOVs. The SOVs can enhance the absorption in visible light region and improve the separation efficiency of photo-generated charges. Hence, the transformation rate of adsorbed O2 on the as-prepared BiOBr with SOVs to superoxide anion radicals (•O2(-)) and the photocatalytic activity are greatly enhanced. Based on the modification by several carboxylic acids and the photocatalytic results, we propose that carboxylic acids with natural bond orbital (NBO) electrostatic charges absolute values greater than 0.830 are effective in modifying BiOBr.

20.
Dalton Trans ; 45(6): 2444-53, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26660856

RESUMEN

Porous sphere-like tricobalt tetraoxide (Co3O4)-cobalt chloride hydrate (CoCl2·6H2O, CCH) heterojunctions are obtained using a one-step facile solution combustion route. The heterostructure is confirmed by XRD, HRTEM, and XPS measurements. Their photocatalytic performances are evaluated by the degradation of methyl orange (MO) and the reduction removal of Cr(VI) ions under visible light irradiation. The heterojunction containing 81.5 wt% Co3O4 and 18.5 wt% CCH exhibits the highest photocatalytic performance, for which the pseudo-first-order reaction rate constant is 10.0 and 8.7 times that of pure Co3O4 towards MO degradation and Cr(vi) reduction, respectively. This enhancement in activity can be attributed to the effective electron transfer from the conduction band of Co3O4 to that of CCH, which is verified with a double increase of the photocurrent valve of the heterojunction sample electrode in comparison with the bare Co3O4 sample electrode. Electron paramagnetic resonance, fluorescence spectrophotometry and scavenger experiments indicate that photo-induced holes, and hydroxyl and superoxide anion radicals are the active species responsible for the photo-oxidation of MO. The reasons for the formation of these species are discussed and proposed based on the band gap structures of Co3O4 and CCH. The recycling experiment results indicate that the activity can be regained by a remedial experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA