Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7842): 381-385, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473227

RESUMEN

Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1-6. However, the bulk-edge correspondence-which has been widely used in experiments to determine the band topology from edge properties-is inadequate in discerning various topological crystalline phases7-16, leading to challenges in the experimental classification of the large family of topological crystalline materials4-6. It has been theoretically predicted that disclinations-ubiquitous crystallographic defects-can provide an effective probe of crystalline topology beyond edges17-19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk-disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns-a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump-probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk-disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.

2.
Genome Res ; 32(7): 1285-1297, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35835565

RESUMEN

Heat shock is a common environmental stress, although the response of the nucleus to it remains controversial in mammalian cells. Acute reaction and chronic adaptation to environmental stress may have distinct internal rewiring in the gene regulation networks. However, this difference remains largely unexplored. Here, we report that chromatin conformation and chromatin accessibility respond differently in short- and long-term heat shock in human K562 cells. We found that chromatin conformation in K562 cells was largely stable in response to short-term heat shock, whereas it showed clear and characteristic changes after long-term heat treatment with little alteration in chromatin accessibility during the whole process. We further show in silico and experimental evidence strongly suggesting that changes in chromatin conformation may largely stem from an accumulation of cells in the M stage of the cell cycle in response to heat shock. Our results represent a paradigm shift away from the controversial view of chromatin response to heat shock and emphasize the necessity of cell cycle analysis when interpreting bulk Hi-C data.


Asunto(s)
Cromatina , Respuesta al Choque Térmico , Animales , Puntos de Control del Ciclo Celular/genética , Cromatina/genética , Genómica , Respuesta al Choque Térmico/genética , Humanos , Células K562 , Mamíferos/genética
3.
J Virol ; 98(3): e0181523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421179

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus with high pathogenicity. There has been a gradual increase in the number of reported cases in recent years, with high morbidity and mortality rates. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway plays an important role in the innate immune defense activated by viral infection; however, the role of the cGAS-STING signaling pathway during SFTSV infection is still unclear. In this study, we investigated the relationship between SFTSV infection and cGAS-STING signaling. We found that SFTSV infection caused the release of mitochondrial DNA into the cytoplasm and inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. We found that the SFTSV envelope glycoprotein Gn was a potent inhibitor of the cGAS-STING pathway and blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Gn of SFTSV interacted with STING to inhibit STING dimerization and inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. In addition, Gn was found to be involved in inducing STING degradation, further inhibiting the downstream immune response. In conclusion, this study identified the important role of the glycoprotein Gn in the antiviral innate immune response and revealed a novel mechanism of immune escape for SFTSV. Moreover, this study increases the understanding of the pathogenic mechanism of SFTSV and provides new insights for further treatment of SFTS. IMPORTANCE: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly discovered virus associated with severe hemorrhagic fever in humans. However, the role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway during SFTSV infection is still unclear. We found that SFTSV infection inhibits downstream innate immune signaling pathways by activating the cytoplasmic DNA receptor cGAS. In addition, SFTSV Gn blocked the nuclear accumulation of interferon regulatory factor 3 and p65 to inhibit downstream innate immune signaling. Moreover, we determined that Gn of SFTSV inhibited K27-ubiquitin modification of STING to disrupt the assembly of the STING-TANK-binding kinase 1 complex and downstream signaling. We found that the SFTSV envelope glycoprotein Gn is a potent inhibitor of the cGAS-STING pathway. In conclusion, this study highlights the crucial function of the glycoprotein Gn in the antiviral innate immune response and reveals a new method of immune escape of SFTSV.


Asunto(s)
FN-kappa B , Síndrome de Trombocitopenia Febril Grave , Humanos , FN-kappa B/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal/genética , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Interferones/metabolismo , Antivirales , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Stem Cells ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864549

RESUMEN

SIRT6 owns versatile types of enzymatic activities as a multitasking protein, including ribosyltransferase and deacetylase ones. To investigate the epigenetic regulations of SIRT6 on MSC fate determination via histone deacetylation, we utilized allosteric small molecules specifically controlling its histone 3 deacetylation activities. Results showed that enhanced deacetylation of SIRT6 promoted the ossific lineage commitment of MSC and finally achieved anabolic effects on hard tissues. Mechanistically, H3K9ac and H3K56ac, governed by SIRT6, in MSC orchestrated the transcriptions of crucial metabolic genes, mediating MSC fate determination. Most importantly, our data evidenced that modulating the epigenetic regulations of SIRT6, specifically via enhancing its deacetylation of H3K9ac and H3K56ac, was a promising choice to treat bone loss diseases and promote dentine regeneration. In this study, we revealed the specific roles of SIRT6's histone modification in MSC fate determination. These findings endow us with insights on SIRT6 and the promising therapeutic choices through SIRT6's epigenetic functions for hard tissues regeneration.

5.
BMC Biotechnol ; 24(1): 56, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135176

RESUMEN

This study evaluated the effects of supplementing the diet of lactating cows with Acremonium terrestris culture (ATC) on milk production, serum antioxidant capacity, inflammatory indices, and serum lipid metabolomics. Over 90 days, 24 multiparous Chinese Holstein cows in mid-lactation (108 ± 10.4 days in milk, 637 ± 25 kg body weight, 30.23 ± 3.7 kg/d milk yield) were divided into either a control diet (CON) or a diet supplemented with 30 g of ATC daily. All the data were analyzed using Student's t test with SPSS 20.0 software. The results showed that compared with CON feeding, ATC feeding significantly increased milk yield, antioxidant capacity, and immune function. Lipidome screening identified 143 lipid metabolites that differed between the two groups. Further analysis using "random forest" machine learning revealed three glycerophospholipid serum metabolites that could serve as lipid markers with a predictive accuracy of 91.67%. This study suggests that ATC can be a useful dietary supplement for improving lactational performance in dairy cows and provides valuable insights into developing nutritional strategies to maintain metabolic homeostasis in ruminants.


Asunto(s)
Acremonium , Suplementos Dietéticos , Lactancia , Lipidómica , Espectrometría de Masas en Tándem , Animales , Bovinos , Femenino , Lipidómica/métodos , Acremonium/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Lípidos/sangre , Leche/química , Leche/metabolismo , Alimentación Animal/análisis , Antioxidantes/metabolismo
6.
BMC Plant Biol ; 24(1): 587, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902638

RESUMEN

BACKGROUND: Monoacylglycerol lipase (MAGL) genes belong to the alpha/beta hydrolase superfamily, catalyze the terminal step of triglyceride (TAG) hydrolysis, converting monoacylglycerol (MAG) into free fatty acids and glycerol. RESULTS: In this study, 30 MAGL genes in upland cotton have been identified, which have been classified into eight subgroups. The duplication of GhMAGL genes in upland cotton was predominantly influenced by segmental duplication events, as revealed through synteny analysis. Furthermore, all GhMAGL genes were found to contain light-responsive elements. Through comprehensive association and haplotype analyses using resequencing data from 355 cotton accessions, GhMAGL3 and GhMAGL6 were detected as key genes related to lipid hydrolysis processes, suggesting a negative regulatory effect. CONCLUSIONS: In summary, MAGL has never been studied in upland cotton previously. This study provides the genetic mechanism foundation for the discover of new genes involved in lipid metabolism to improve cottonseed oil content, which will provide a strategic avenue for marker-assisted breeding aimed at incorporating desirable traits into cultivated cotton varieties.


Asunto(s)
Gossypium , Monoacilglicerol Lipasas , Gossypium/genética , Gossypium/enzimología , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Alelos , Familia de Multigenes , Estudio de Asociación del Genoma Completo , Genoma de Planta , Variación Genética , Filogenia , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haplotipos
7.
Small ; 20(13): e2304150, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964398

RESUMEN

Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Cromonas , Nanopartículas , Sulfonamidas , Humanos , Alcohol Polivinílico , Artritis Reumatoide/tratamiento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Agua
8.
Clin Exp Immunol ; 215(2): 126-136, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-37681358

RESUMEN

The excessive formation of neutrophil extracellular traps (NETs) has been demonstrated to be a pathogenic mechanism of idiopathic inflammatory myopathy (IIM)-associated interstitial lung disease (ILD). This study aimed to answer whether an experimental autoimmune myositis (EAM) model can be used to study IIM-ILD and whether NETs participate in the development of EAM-ILD. An EAM mouse model was established using skeletal muscle homogenate and pertussis toxin (PTX). The relationship between NETs and the ILD phenotype was determined via histopathological analysis. As NETs markers, serum cell-free DNA (cfDNA) and serum citrullinated histone 3 (Cit-H3)-DNA were tested. The healthy mouse was injected with PTX intraperitoneally to determine whether PTX intervention could induce NETs formation in vivo. Neutrophils isolated from the peripheral blood of healthy individuals were given different interventions to determine whether PTX and skeletal muscle homogenate can induce neutrophils to form NETs in vitro. EAM-ILD had three pathological phenotypes similar to IIM-ILD. Cit-H3, neutrophil myeloperoxidase, and neutrophil elastase were overexpressed in the lungs of EAM model mice. The serum cfDNA level and Cit-H3-DNA complex level were significantly increased in EAM model mice. Serum cfDNA levels were increased significantly in vivo intervention with PTX in mice. Both PTX and skeletal muscle homogenate-induced neutrophils to form NETs in vitro. EAM-ILD pathological phenotypes are similar to IIM-ILD, and NETs are involved in the development of ILD in a murine model of EAM. Thus, the EAM mouse model can be used as an ideal model targeting NETs to prevent and treat IIM-ILD.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trampas Extracelulares , Enfermedades Pulmonares Intersticiales , Miositis , Enfermedad Autoinmune Experimental del Sistema Nervioso , Ratones , Animales , Neutrófilos , Histonas , Enfermedad Autoinmune Experimental del Sistema Nervioso/patología , Modelos Animales de Enfermedad , ADN
9.
Clin Exp Immunol ; 217(1): 89-98, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38517050

RESUMEN

Excessive formation of neutrophil extracellular traps (NETs) may lead to myositis-related interstitial lung disease (ILD). There is evidence that NETs can directly injure vascular endothelial cells and play a pathogenic role in the inflammatory exudation of ILD. However, the specific mechanism is unclear. This study aimed to investigate the specific mechanism underlying NET-induced injury to human pulmonary microvascular endothelial cells (HPMECs). HPMECs were stimulated with NETs (200 ng/ml) in vitro. Cell death was detected by propidium iodide staining. The morphological changes of the cells were observed by transmission electron microscopy (TEM). Pyroptosis markers were detected by western blot, immunofluorescence, and quantitative real-time polymerase chain reaction, and the related inflammatory factor Interleukin-1ß (IL-1ß) was verified by enzyme-linked immunosorbent assay (ELISA). Compared with the control group, HPMECs mortality increased after NET stimulation, and the number of pyroptosis vacuoles in HPMECs was further observed by TEM. The pulmonary microvascular endothelial cells (PMECs) of the experimental autoimmune myositis mouse model also showed a trend of pyroptosis in vivo. Cell experiment further confirmed the significantly high expression of the NLRP3 inflammasome and pyroptosis-related markers, including GSDMD and inflammatory factor IL-1ß. Pretreated with the NLRP3 inhibitor MCC950, the activation of NLRP3 inflammasome and pyroptosis of HPMECs were effectively inhibited. Our study confirmed that NETs promote pulmonary microvascular endothelial pyroptosis by activating the NLRP3 inflammasome, suggesting that NETs-induced pyroptosis of PMECs may be a potential pathogenic mechanism of inflammatory exudation in ILD.


Asunto(s)
Células Endoteliales , Trampas Extracelulares , Inflamasomas , Pulmón , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Animales , Células Endoteliales/metabolismo , Ratones , Inflamasomas/metabolismo , Humanos , Pulmón/inmunología , Pulmón/patología , Interleucina-1beta/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Células Cultivadas , Ratones Endogámicos C57BL , Microvasos/patología , Microvasos/inmunología
10.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34875002

RESUMEN

As the basal bricks, the dynamics and arrangement of nucleosomes orchestrate the higher architecture of chromatin in a fundamental way, thereby affecting almost all nuclear biology processes. Thanks to its rather simple protocol, assay for transposase-accessible chromatin using sequencing (ATAC)-seq has been rapidly adopted as a major tool for chromatin-accessible profiling at both bulk and single-cell levels; however, to picture the arrangement of nucleosomes per se remains a challenge with ATAC-seq. In the present work, we introduce a novel ATAC-seq analysis toolkit, named decoding nucleosome organization profile based on ATAC-seq data (deNOPA), to predict nucleosome positions. Assessments showed that deNOPA outperformed state-of-the-art tools with ultra-sparse ATAC-seq data, e.g. no more than 0.5 fragment per base pair. The remarkable performance of deNOPA was fueled by the short fragment reads, which compose nearly half of sequenced reads in the ATAC-seq libraries and are commonly discarded by state-of-the-art nucleosome positioning tools. However, we found that the short fragment reads enrich information on nucleosome positions and that the linker regions were predicted by reads from both short and long fragments using Gaussian smoothing. Last, using deNOPA, we showed that the dynamics of nucleosome organization may not directly couple with chromatin accessibility in the cis-regulatory regions when human cells respond to heat shock stimulation. Our deNOPA provides a powerful tool with which to analyze the dynamics of chromatin at nucleosome position level with ultra-sparse ATAC-seq data.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Nucleosomas , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Nucleosomas/genética , Análisis de Secuencia de ADN
11.
Metab Eng ; 81: 100-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000548

RESUMEN

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Asunto(s)
Escherichia coli , Carmin de Índigo , Carmin de Índigo/metabolismo , Escherichia coli/metabolismo , Indoles/metabolismo , Oxigenasas de Función Mixta/metabolismo
12.
New Phytol ; 242(3): 1131-1145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482565

RESUMEN

Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Ácido Cítrico/metabolismo , Sequías , Estaciones del Año , Citratos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Frutas/genética , Frutas/metabolismo
13.
Clin Genet ; 105(1): 52-61, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37822034

RESUMEN

Haplotype-based noninvasive prenatal diagnosis (NIPD) is applicable for various recessive single-gene disorders in proband families. However, a comprehensive exploration of critical factors influencing the assay performance, such as fetal fraction, informative single nucleotide polymorphism (SNP) count, and recombination events, has yet to be performed. It is critical to identify key factors affecting NIPD performance, including its accuracy and success rate, and their impact on clinical diagnostics to guide clinical practice. We conducted a prospective study, recruiting 219 proband families with singleton pregnancies at risk for eight recessive single-gene disorders (Duchenne muscular dystrophy, spinal muscular atrophy, phenylketonuria, methylmalonic acidemia, hemophilia A, hemophilia B, non-syndromic hearing loss, and congenital adrenal hyperplasia) at 7-14 weeks of gestation. Haplotype-based NIPD was performed by evaluating the relative haplotype dosage (RHDO) in maternal circulation, and the results were validated via invasive prenatal diagnosis or newborn follow-ups. Among the 219 families, the median gestational age at first blood draw was 8+5 weeks. Initial testing succeeded for 190 families and failed for 29 due to low fetal fraction (16), insufficient informative SNPs (9), and homologous recombination near pathogenic variation (4). Among low fetal fraction families, successful testing was achieved for 11 cases after a redraw, while 5 remained inconclusive. Test failures linked to insufficient informative SNPs correlated with linkage disequilibrium near the genes, with F8 and MMUT exhibiting the highest associated failure rates (14.3% and 25%, respectively). Homologous recombination was relatively frequent around the DMD and SMN1 genes (8.8% and 4.8%, respectively) but led to detection failure in only 44.4% (4/9) of such cases. All NIPD results from the 201 successful families were consistent with invasive diagnostic findings or newborn follow-up. Fetal fraction, informative SNPs count, and homologous recombination are pivotal to NIPD performance. Redrawing blood effectively improves the success rate for low fetal fraction samples. However, informative SNPs count and homologous recombination rates vary significantly across genes, necessitating careful consideration in clinical practice. We have designed an in silico method based on linkage disequilibrium data to predict the number of informative SNPs. This can identify genomic regions where there might be an insufficient number of SNPs, thereby guiding panel design. With these factors properly accounted for, NIPD is highly accurate and reliable.


Asunto(s)
Distrofia Muscular de Duchenne , Pruebas Prenatales no Invasivas , Embarazo , Femenino , Recién Nacido , Humanos , Lactante , Pruebas Prenatales no Invasivas/métodos , Haplotipos/genética , Estudios Prospectivos , Diagnóstico Prenatal/métodos , Distrofia Muscular de Duchenne/diagnóstico
14.
Opt Express ; 32(11): 18972-18983, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859042

RESUMEN

Diffusive metasurfaces have attracted a great deal of interest in recent years for their promising radar cross section reduction ability. In this work, we proposed a methodology for designing non-tunable and tunable diffusive metasurfaces with transverse magnetized ferrite (TMF). The metasurfaces are two-dimensional arrays configured by metal plates and TMFs backed by metal plates, where the TMFs are functioned as perfect magnetic conductor and magnetic absorbers in lossless and lossy cases, respectively. The designed tunable metasurface allows for control of the operating frequency by adjusting the biased magnetic field, while the non-tunable version provides a wider operation band. This paper demonstrates that the ferrite-based metasurface have exotic stealth performance at microwave frequencies and offers a new approach to design stealth structures.

15.
Chemistry ; : e202401893, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115035

RESUMEN

The electrochemical regeneration of reduced nicotinamide adenine dinucleotide (NADH) using [Rh(Cp*)(bpy)Cl]+ holds significant promise for the industrial synthesis of chiral chemicals. However, challenges persist due to the high consumption of NADH and the limited efficiency of its cyclic regeneration, which currently hinder widespread application. To address these obstacles, based on in-situ growth of 3D ordered metal-organic framework (NU-1000) on the surface of graphite felt, [Rh(Cp*)(bpy)Cl]+ were immobilized on the Zr6 nodes of NU-1000 by solvent-assisted ligand incorporation (SALI), and applied in a flow bioreactor. Moreover, we employ a gas diffusion electrode (GDE) to oxidize H2, providing a clean proton source for the electrochemical regeneration of NADH. Consequently, highly efficient enzymatic electrocatalytic synthesis of L-lactate was achieved when coupled with L-lactate dehydrogenases (LDH) as a model reaction, and the total turnover number (TTN) reached 19600 and 1750 for [Rh(Cp*)(bpy)Cl]+ and NAD+ after 48 h, corresponding to a high turnover frequency (TOF) of 2350 h-1 and 210 h-1 for [Rh(Cp*)(bpy)Cl]+ and NAD+, respectively. This work provides new insights for the construction of efficient enzymatic electrosynthesis systems in industrial production.

16.
Am J Med Genet A ; 194(6): e63560, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38329169

RESUMEN

The study is to explore the feasibility and value of SNP-based noninvasive prenatal diagnosis (NIPD) for facioscapulohumeral muscular dystrophy type 1 (FSHD1) in early pregnancy weeks. We prospectively collected seven FSHD1 families, with an average gestational age of 8+6. Among these seven couples, there were three affected FSHD1 mothers and four affected fathers. A multiplex-PCR panel comprising 402 amplicons was designed to selective enrich for highly heterozygous SNPs upstream of the DUX4 gene. Risk haplotype was constructed based on familial linkage analysis. Fetal genotypes were accurately inferred through relative haplotype dosage analysis using Bayes Factor. All tests were successfully completed in a single attempt, and no recombination events were detected. NIPD results were provided within a week, which is 4 weeks earlier than karyomapping and 7 weeks earlier than Bionano single-molecule optical mapping (BOM). Ultimately, five FSHD1 fetuses and two normal fetuses were successfully identified, with a 100% concordance rate with karyomapping and BOM. Therefore, SNP-based NIPD for FSHD1 was demonstrated to be feasible and accurate in early weeks of gestation, although the risk of recombination events cannot be completely eliminated. In the future, testing of more cases is still necessary to fully determine the clinical utility.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Polimorfismo de Nucleótido Simple , Primer Trimestre del Embarazo , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Embarazo , Femenino , Polimorfismo de Nucleótido Simple/genética , Primer Trimestre del Embarazo/genética , Masculino , Haplotipos/genética , Pruebas Prenatales no Invasivas/métodos , Diagnóstico Prenatal/métodos , Adulto , Proteínas de Homeodominio/genética , Genotipo , Linaje
17.
J Org Chem ; 89(16): 11747-11752, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39083827

RESUMEN

The radical 1,3-hydro-di/monofluoromethylation of N,N'-cyclic azomethine imines with HCF2SO2Na/H2CFSO2Na via photoredox catalysis is described. This reaction exhibits broad functional group compatibility, providing the desired products in good yields. However, CF3SO2Na failed to produce the trifluoromethyl product. DFT calculations revealed that the transition state activation energy for radical trifluoromethylation was significantly higher and the isotropic charge repulsion makes it difficult for the CF3 radical to transfer electrons.

18.
BMC Endocr Disord ; 24(1): 81, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38890674

RESUMEN

PURPOSE: Previous studies have suggested that obesity defined by body mass index(BMI) is a protective factor for bone mineral density(BMD), but have overlooked the potential influence of different types of obesity. This study aims to evaluate the correlation between abdominal obesity index A Body Shape Index(ABSI) and adolescent bone density, and analyze the relationship between abdominal obesity and bone metabolism. METHODS: A total of 1557 adolescent participants were included in NHANES from 2007 to 2018. Calculate the ABSI using a specific formula that takes into account waist circumference and BMI. A weighted multiple linear regression model is used to evaluate the linear correlation between ABSI and BMD. Forest plots are used to analyze the correlations between subgroups, and cubic splines are limited to evaluate the nonlinear correlations and saturation effects between ABSI and BMD. RESULTS: After adjusting for confounding factors, there was a significant linear correlation (P < 0.01) between ABSI and femoral BMD, both as a continuous variable and an ordered categorical variable. The restrictive cubic spline curve indicates a significant nonlinear correlation and saturation effect between adolescent ABSI and BMD. CONCLUSION: Research has shown a significant negative correlation between ABSI and BMD at the four detection sites of the femur, and this correlation may vary slightly due to age, race, family income, and different detection sites. The research results indicate that compared to overall body weight, fat distribution and content may be more closely related to bone metabolism.


Asunto(s)
Índice de Masa Corporal , Densidad Ósea , Desarrollo Óseo , Encuestas Nutricionales , Obesidad Abdominal , Humanos , Adolescente , Obesidad Abdominal/complicaciones , Masculino , Femenino , Desarrollo Óseo/fisiología , Estudios Transversales , Niño , Circunferencia de la Cintura , Pronóstico
19.
Mol Divers ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652366

RESUMEN

Plinabulin, a 2, 5-diketopiperazine-type tubulin inhibitor derived from marine natural products, is currently undergoing Phase III clinical trials for the treatment of non-small cell lung cancer (NSCLC) and chemotherapy-induced neutropenia (CIN). To obtain novel 2, 5-diketopiperazine derivatives with higher biological activity, we designed and synthesized two series of 37 plinabulin derivatives at the C-ring, based on the co-crystal structure of compound 1 and tubulin. Their structures were characterized using NMR and HRMS. All compounds were screened in vitro using the lung cancer cell line NCI-H460 using the MTT method, and the compounds with better activity were further screened in BxPC-3 and HT-29 cells. The compounds 16c (IC50 = 2.0, NCI-H460; IC50 = 1.2 nM, BxPC-3; IC50 = 1.97 nM, HT-29) and 26r (IC50 = 0.96, NCI-H460; IC50 = 0.66 nM, BxPC-3; IC50 = 0.61 nM, HT-29) had the best activity. The cytotoxic activity of compound 26r against various tumor cell lines occurred at less than 1 nM.

20.
J Nanobiotechnology ; 22(1): 134, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549081

RESUMEN

BACKGROUND: Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS: Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-ß as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1ß and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS: The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.


Asunto(s)
Neovascularización de la Córnea , Minociclina , Humanos , Minociclina/farmacología , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/prevención & control , Microesferas , Angiogénesis , Álcalis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA