Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 473
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783704

RESUMEN

The untranslated region (UTR) of messenger ribonucleic acid (mRNA), including the 5'UTR and 3'UTR, plays a critical role in regulating gene expression and translation. Variants within the UTR can lead to changes associated with human traits and diseases; however, computational prediction of UTR variant effect is challenging. Current noncoding variant prediction mainly focuses on the promoters and enhancers, neglecting the unique sequence of the UTR and thereby limiting their predictive accuracy. In this study, using consolidated datasets of UTR variants from disease databases and large-scale experimental data, we systematically analyzed more than 50 region-specific features of UTR, including functional elements, secondary structure, sequence composition and site conservation. Our analysis reveals that certain features, such as C/G-related sequence composition in 5'UTR and A/T-related sequence composition in 3'UTR, effectively differentiate between nonfunctional and functional variant sets, unveiling potential sequence determinants of functional UTR variants. Leveraging these insights, we developed two classification models to predict functional UTR variants using machine learning, achieving an area under the curve (AUC) value of 0.94 for 5'UTR and 0.85 for 3'UTR, outperforming all existing methods. Our models will be valuable for enhancing clinical interpretation of genetic variants, facilitating the prediction and management of disease risk.


Asunto(s)
Regiones no Traducidas 3' , Regiones no Traducidas 5' , Humanos , Biología Computacional/métodos , Aprendizaje Automático , Variación Genética , Regiones no Traducidas
2.
Oncologist ; 29(7): e877-e886, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537665

RESUMEN

BACKGROUND: According to the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) criteria, both immunohistochemical HER2 (3+) and HER2 (2+)/in situ hybridization (ISH) amplified [HER2 (2+)/ISH+] breast cancers (BCs) fall under the HER2-positive BC category. However, there is a lack of studies exploring the difference of neoadjuvant therapeutic response between patients with HER2 (3+) and HER2 (2+)/ISH+ early BC. We aimed to evaluate the neoadjuvant therapeutic response, long-term outcome, and intrinsic subtype heterogeneity between HER2 (3+) and HER2 (2+)/ISH+ BC. METHODS: We examined 2 distinct cohorts. Cohort 1 (C1) encompassed 2648 patients with HER2-positive early BC diagnoses, and they received neoadjuvant therapy (NT) and surgery between January 1, 2009 and December 31, 2022, from the Shanghai Jiao Tong University Breast Cancer Data Base. Cohort 2 (C2) comprised 135 patients with early-stage HER2-positive BC who underwent NT and surgery at Henan Cancer Hospital from January 1, 2021, to December 31, 2022. These patients had available genomic and transcriptomic data at their disposal. C1 and C2 were further categorized into 2 patient cohorts as follows: (1) patients with IHC HER2 (3+) early BC [HER2 (3+) group], (2) patients with HER2 (2+)/ISH+ early BC [HER2 (2+)/ISH+ group]. Among those excluded from the analysis were patients < 18 years or >80 years of age. Clinicopathological parameters, long-term outcomes, and intrinsic subtypes were analyzed. RESULTS: In the C1 population, 83.7% had HER2 (3+) BC, while 16.3% had HER2 (2+)/ISH+ BC. Patients with HER2 (3+) had a significantly higher pathological complete response (PCR) rate (38.9%) than patients with HER2 (2+)/ISH+ (18.1%; P < .001), but the disease-free survival (DFS) was comparable after a median follow-up of 29 months (P = .556). The addition of trastuzumab or trastuzumab plus pertuzumab to neoadjuvant chemotherapy (NAC) improved PCR rates and DFS in HER2 (3+) BC but not in HER2 (2+)/ISH+ BC. In the C2 population, 97.75% HER2 (3+) and 52.17% HER2 (2+)/ISH+ were HER2 enriched (HER2E) subtype (P < .001). HER2E showed increased PCR rates compared to non-HER2E (P = .004). CONCLUSIONS: Compared to HER2 (3+) BC, the limited effectiveness of neoadjuvant trastuzumab and pertuzumab therapy for HER2 (2+)/ISH+ BC is due to subtype heterogeneity. Reassessment of targeted therapy efficacy in patients with HER2 (2+)/ISH+ BC is essential.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Receptor ErbB-2/metabolismo , Adulto , Inmunohistoquímica/métodos , Anciano , Estadificación de Neoplasias
3.
Anal Chem ; 96(11): 4359-4368, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452345

RESUMEN

Microorganisms are important sources of bioactive natural products. However, the complexity of microbial metabolites and the low abundance of active compounds render the isolation and purification process laborious and inefficient. During our search for active substances capable of inhibiting the newly discovered highly lethal Vibrio strain vp-HL, we found that the fermentation broth of multiple Bacillus strains exhibited antibacterial activity. However, the substances responsible for the activity remained unclear. Metabolomics, molecular networking (MN), and the Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) were employed in conjunction with bioactivity screening to predict the antibacterial compounds from Bacillus strains. The analysis of fractions, and their isolation, NMR-based annotation, and bioactivity evaluation of an amicoumacin compound partially confirmed the prediction from these statistical analyses. This work presents the potential of marine Bacillus in producing active substances against Vibrio species. Additionally, it highlighted the significance and feasibility of metabolomics and MN in the dereplication of compounds and the determination of isolation targets.


Asunto(s)
Bacillus , Vibrio , Bacillus/metabolismo , Metabolómica/métodos , Antibacterianos/química , Espectrometría de Masas
4.
Exp Eye Res ; 244: 109946, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815794

RESUMEN

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.


Asunto(s)
Luz , Poli(ADP-Ribosa) Polimerasa-1 , Retina , Degeneración Retiniana , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratones , Luz/efectos adversos , Retina/efectos de la radiación , Retina/patología , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/metabolismo , Modelos Animales de Enfermedad , Western Blotting , Masculino , Terapia por Luz de Baja Intensidad , Luz Azul
5.
Cell Commun Signal ; 22(1): 236, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650003

RESUMEN

BACKGROUND: The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS: A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS: Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION: The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.


Asunto(s)
Axones , Interleucina-4 , Regeneración Nerviosa , Células Ganglionares de la Retina , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Animales , Interleucina-4/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , N-Metilaspartato/farmacología , Estaurosporina/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Recombinantes/farmacología
6.
Environ Sci Technol ; 58(20): 8748-8759, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709019

RESUMEN

Sea spray aerosols (SSA) greatly affect the climate system by scattering solar radiation and acting as seeds for cloud droplet formation. The ecosystems in the Arctic Ocean are rapidly changing due to global warming, and the effects these changes have on the generation of SSA, and thereby clouds and fog formation in this region, are unknown. During the ship-based Arctic Century Expedition, we examined the dependency of forced SSA production on the biogeochemical characteristics of seawater using an on-board temperature-controlled aerosol generation chamber with a plunging jet system. Our results indicate that mainly seawater salinity and organic content influence the production and size distribution of SSA. However, we observed a 2-fold higher SSA production from waters with similar salinity collected north of 81°N compared to samples collected south of this latitude. This variability was not explained by phytoplankton and bacterial abundances or Chlorophyll-a concentration but by the presence of glucose in seawater. The synergic action of sea salt (essential component) and glucose or glucose-rich saccharides (enhancer) accounts for >80% of SSA predictability throughout the cruise. Our results suggest that besides wind speed and salinity, SSA production in Arctic waters is also affected by specific organics released by the microbiota.


Asunto(s)
Aerosoles , Glucosa , Salinidad , Agua de Mar , Regiones Árticas , Agua de Mar/química , Glucosa/metabolismo , Fitoplancton
7.
Cell Mol Life Sci ; 80(4): 92, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928776

RESUMEN

The proper development of primordial germ cells (PGCs) is an essential prerequisite for gametogenesis and mammalian fertility. The Fanconi anemia (FA) pathway functions in maintaining the development of PGCs. FANCT/UBE2T serves as an E2 ubiquitin-conjugating enzyme that ubiquitylates the FANCD2-FANCI complex to activate the FA pathway, but its role in the development of PGCs is not clear. In this study, we found that Ube2t knockout mice showed defects in PGC proliferation, leading to severe loss of germ cells after birth. Deletion of UBE2T exacerbated DNA damage and triggered the activation of the p53 pathway. We further demonstrated that UBE2T counteracted transcription-replication conflicts by resolving R-loops and stabilizing replication forks, and also protected common fragile sites by resolving R-loops in large genes and promoting mitotic DNA synthesis to maintain the genome stability of PGCs. Overall, these results provide new insights into the function and regulatory mechanisms of the FA pathway ensuring normal development of PGCs.


Asunto(s)
Replicación del ADN , Células Germinativas , Transcripción Genética , Enzimas Ubiquitina-Conjugadoras , Animales , Ratones , Daño del ADN/genética , Replicación del ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Transcripción Genética/genética
8.
Mar Drugs ; 22(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921585

RESUMEN

Talaromyces, a filamentous fungus widely distributed across terrestrial and marine environments, can produce a diverse array of natural products, including alkaloids, polyketones, and polyketide-terpenoids. Among these, chrodrimanins represented a typical class of natural products. In this study, we isolated three previously undescribed pentaketide-sesquiterpenes, 8,9-epi-chrodrimanins (1-3), along with eight known compounds (4-11). The structures of compounds 1-3 were elucidated using nuclear magnetic resonance (NMR) and mass spectrometry (MS), while their absolute configurations were determined through X-ray crystallography and electronic circular dichroism (ECD) computations. The biosynthetic pathways of compounds 1-3 initiate with 6-hydroxymellein and involve multiple stages of isoprenylation, cyclization, oxidation, and acetylation. We selected four strains of gastrointestinal cancer cells for activity evaluation. We found that compound 3 selectively inhibited MKN-45, whereas compounds 1 and 2 exhibited no significant inhibitory activity against the four cell lines. These findings suggested that 8,9-epi-chrodrimanins could serve as scaffold compounds for further structural modifications, potentially leading to the development of targeted therapies for gastric cancer.


Asunto(s)
Antineoplásicos , Talaromyces , Talaromyces/química , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Cristalografía por Rayos X , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Organismos Acuáticos , Espectroscopía de Resonancia Magnética , Policétidos/farmacología , Policétidos/química , Policétidos/aislamiento & purificación , Estructura Molecular
9.
Immunopharmacol Immunotoxicol ; 46(3): 417-423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678437

RESUMEN

OBJECTIVE: Up-regulating programmed cell death ligand-1(PD-L1) expressed on tumor cells and tumor-infiltrating myeloid cells interacting with up-regulated programmed cell death-1 (PD-1) expressed on tumor-infiltrating lymphoid cells greatly hinder their tumor-inhibiting effect. It is necessary to explore the deep mechanism of this negative effect, so as to find the potential methods to improve the immunotherapy efficiency. METHODS AND RESULTS: In this study, we found that the PD-1 expression in lung cancer-infiltrating type II innate lymphoid cells (ILC2s) was highly up-regulated, which greatly restrained the activation and function of ILC2s. Furthermore, anti-PD-1 could restore the inhibition and effective cytokine secretion of ILC2s when co-cultured with tumor cells. In vivo studies proved that anti-PD-1 treatment promoted the activation of tumor-infiltrating ILC2s and inhibited the tumor growth of LLC-bearing nude mice. DISCUSSION: Our studies demonstrate a new PD-1/PD-L1 axis regulating mechanism on innate immune cells, which provide a useful direction to ILC2s-based immunotherapy to cancer diseases.


Asunto(s)
Inmunidad Innata , Linfocitos , Ratones Desnudos , Receptor de Muerte Celular Programada 1 , Regulación hacia Arriba , Animales , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Ratones , Regulación hacia Arriba/efectos de los fármacos , Inmunidad Innata/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Humanos , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Ratones Endogámicos C57BL , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/metabolismo
10.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542877

RESUMEN

Disordered gut microbiota (GM) structure and function may contribute to osteoporosis (OP). Nodakenin has been shown to ameliorate osteoporosis; however, its anti-osteoporotic mechanism is unknown. This study aimed to further reveal the mechanism of the anti-osteoporotic action of nodakenin from the perspective of the microbiome and metabolome. An osteoporosis model was induced in mice through ovariectomy (OVX), with bone mass and microstructure assessed using µCT. Subsequently, ELISA and histologic examination were used to detect biochemical indicators of bone conversion and intestinal morphology. Using metabolomics and 16S rRNA sequencing, it was possible to determine the composition and abundance of the gut microbiota in feces. The results revealed that nodakenin treatment improved the bone microstructure and serum levels of bone turnover markers, and increased the intestinal mucosal integrity. 16S rRNA sequencing analysis revealed that nodakenin treatment decreased the relative abundance of Firmicutes and Patescibacteria, as well as the F/B ratio, and elevated the relative abundance of Bacteroidetes in OVX mice. In addition, nodakenin enhanced the relative abundance of Muribaculaceae and Allobaculum, among others, at the genus level. Moreover, metabolomics analysis revealed that nodakenin treatment significantly altered the changes in 113 metabolites, including calcitriol. A correlation analysis revealed substantial associations between various gut microbiota taxa and both the osteoporosis phenotype and metabolites. In summary, nodakenin treatment alleviated OVX-induced osteoporosis by modulating the gut microbiota and intestinal barrier.


Asunto(s)
Cumarinas , Microbioma Gastrointestinal , Glucósidos , Osteoporosis , Femenino , Ratones , Animales , Humanos , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Ovariectomía/efectos adversos
11.
Funct Integr Genomics ; 23(2): 128, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071224

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence worldwide. The underlying mechanisms remain poorly understood. The DNA metabolic process of homologous recombination repair (HRR) has been linked to a high probability of tumorigenesis and drug resistance. This study aimed to determine the role of HRR in HCC and identify critical HRR-related genes that affect tumorigenesis and prognosis. A total of 613 tumor and 252 para-carcinoma tissue samples were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) to obtain differentially expressed genes (DEGs). HRR-related genes were assessed using gene enrichment and pathway analyses. Survival analysis was performed using the Kaplan-Meier method in the Gene Expression Profiling Interactive Analysis portal. The levels of RAD54L in the HRR pathway were detected by RT-qPCR and western blotting in para-carcinoma and HCC tissues and in L02 normal human liver cells and Huh7 HCC cells. Immunohistochemistry (IHC) was performed on the clinical specimens to determine the connection between gene expression and clinical features. Bioinformatics analysis revealed that the HRR pathway was enriched in HCC tissues. Upregulation of HRR pathway DEGs in HCC tissues was positively correlated with tumor pathological staging and negatively associated with patient overall survival. RAD54B, RAD54L, and EME1 genes in the HRR pathway were screened as markers for predicting HCC prognosis. RT-qPCR identified RAD54L as the most significantly expressed of the three genes. Western blotting and IHC quantitative analyses further demonstrated that RAD54L protein levels were higher in HCC tissues. IHC analysis of 39 pairs of HCC and para-carcinoma tissue samples also revealed an association between RAD54L and Edmondson-Steiner grade and the proliferation-related gene Ki67. The collective findings positively correlate RAD54L in the HRR signaling pathway with HCC staging and implicate RAD54L as a marker to predict HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Reparación del ADN por Recombinación , Perfilación de la Expresión Génica/métodos , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética
12.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34368852

RESUMEN

The identification of structural variations (SVs) and viral integrations in circulating tumor DNA (ctDNA) is a key step in precision oncology that may assist clinicians in treatment selection and monitoring. However, due to the short fragment size of ctDNA, it is challenging to accurately detect low-frequency SVs or SVs involving complex junctions in ctDNA sequencing data. Here, we describe Aperture, a new fast SV caller that applies a unique strategy of $k$-mer-based searching, binary label-based breakpoint detection and candidate clustering to detect SVs and viral integrations with high sensitivity, especially when junctions span repetitive regions. Aperture also employs a barcode-based filter to ensure specificity. Compared with existing methods, Aperture exhibits superior sensitivity and specificity in simulated, reference and real data tests, especially at low dilutions. Additionally, Aperture is able to predict sites of viral integration and identify complex SVs involving novel insertions and repetitive sequences in real patient data. Aperture is freely available at https://github.com/liuhc8/Aperture.


Asunto(s)
ADN Tumoral Circulante/química , Conformación de Ácido Nucleico , Integración Viral , Algoritmos , Humanos , Neoplasias/sangre , Neoplasias/genética
13.
J Med Virol ; 95(12): e29275, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38054556

RESUMEN

HH-120, an IgM-like angiotensin converting enzyme 2 (ACE2) fusion protein, has been developed as a nasal spray against Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently undergoing human trials. HH-120 nasal spray was assessed for postexposure prophylaxis (PEP) in two investigator-initiated (NS01 and NS02) trials with different risk levels of SARS-CoV-2 exposure. NS01 enrolled family caregiver participants who had continuous contacts with laboratory-confirmed index cases; NS02 enrolled participants who had general contacts (Part 1) or close contacts (Part 2) with index cases. The primary endpoints were safety and laboratory-confirmed and/or symptomatic SARS-CoV-2 infection. In NS01 trial (14 participants), the SARS-CoV-2 infection rates were 25% in the HH-120 group and 83.3% in the external control group (relative risk reduction [RRR]: 70.0%). In NS02-Part 1 (193 participants), the infection rates were 4% (HH-120) versus 11.3% (placebo), symptomatic infection rates were 0.8% versus 3.5%, hence with a RRR of 64.6% and 77.1%, respectively. In Part 2 (76 participants), the infection rates were 17.1% (HH-120) versus 30.4% (placebo), symptomatic infection rates were 7.5% versus 27.3%, with a RRR of 43.8% and 72.5%, respectively. No HH-120-related serious adverse effects were observed. The HH-120 nasal spray used as PEP was safe and effective in preventing laboratory-confirmed and symptomatic SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Proteínas Recombinantes de Fusión , Humanos , Enzima Convertidora de Angiotensina 2/uso terapéutico , COVID-19/prevención & control , Inmunoglobulina M , Rociadores Nasales , SARS-CoV-2 , Proteínas Recombinantes de Fusión/uso terapéutico , Profilaxis Posexposición
14.
Cell Mol Neurobiol ; 43(3): 1037-1048, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35792991

RESUMEN

Retinitis pigmentosa (RP) is a group of genetic disorders resulting in inherited blindness due to the degeneration of rod and cone photoreceptors. The various mechanisms underlying rod degeneration primarily rely on genetic mutations, leading to night blindness initially. Cones gradually degenerate after rods are almost eliminated, resulting in varying degrees of visual disability and blindness. The mechanism of cone degeneration remains unclear. An understanding of the mechanisms underlying cone degeneration in RP, a highly heterogeneous disease, is essential to develop novel treatments of RP. Herein, we review recent advancements in the five hypotheses of cone degeneration, including oxidative stress, trophic factors, metabolic stress, light damage, and inflammation activation. We also discuss the connection among these theories to provide a better understanding of secondary cone degeneration in RP. Five current mechanisms of cone degenerations in RP Interactions among different pathways are involved in RP.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia , Ceguera/metabolismo , Estrés Oxidativo
15.
Cell Mol Neurobiol ; 43(7): 3265-3276, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391574

RESUMEN

The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitofagia , Estrés Oxidativo/fisiología
16.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37830792

RESUMEN

Two Gram-stain-positive, facultatively anaerobic, motile, endospore-forming, rod-shaped bacteria, designated CLL-3-40T and CLL-7-23, were isolated from coastal sediment sampled in Changyi, Shandong Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these strains were related to the genus Bacillus and close to six type strains of species within the Bacillus licheniformis group. In phenotypic characterization tests, strain CLL-3-40T could grow at 15-50 °C (optimum, 37 °C) and in media with pH 5-9 (optimum pH 7.0), and tolerate up to 12 % (w/v) NaCl. The fermentation broth supernatant extracted by ethyl acetate of strain CLL-3-40T could inhibit aquaculture pathogenic vibrios. The predominant cellular fatty acids of strain CLL-3-40T were anteiso-C15 : 0 (30.7 %) and iso-C15 : 0 (31.5 %); the peptidoglycan from cell-wall contained meso-diaminopimelic acid; the predominant quinone was menaquinone 7; and the major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and two unidentified phospholipids. The digital DNA-DNA hybridization values and average nucleotide identities among strains CLL-3-40T and CLL-7-23 and their close type strains were less than 21.9 and 48.4 %, respectively, thereby indicating that strain CLL-3-40T should represent a novel species of the genus Bacillus. The genomic DNA G+C contents were 38.4 mol% in strain CLL-3-40T and 38.3 mol% in strain CLL-7-23. The 12 biosynthetic gene clusters of strain CLL-3-40T were predicted based on results from the online server antiSMASH. Based upon the consensus of phenotypic and genotypic results, strain CLL-3-40T should be classified as representing a novel species of the genus Bacillus, for which the name Bacillus changyiensis sp. nov. is proposed. The type strain is CLL-3-40T (= MCCC 1A14857T=JCM 35755T).


Asunto(s)
Bacillus , Leucemia Linfocítica Crónica de Células B , Humanos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Fosfolípidos/química
17.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38050805

RESUMEN

Two Gram-stain-negative, chemoheterotrophic, aerobic bacteria, designated IC7T and JM2-8T, were isolated from seawater of the Yellow Sea of China and rhizosphere soil of mangroves in Xiamen, Fujian, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that these two novel strains belonged to the family Roseobacteraceae. Strain IC7T formed a coherent lineage within the genus Pseudodonghicola, showing 98.05 % 16S rRNA gene sequence similarity to Pseudodonghicola xiamenensis Y-2T. Strain JM2-8T was most closely related to members of the genus Sedimentitalea, showing 96.51 and 96.73 % 16S rRNA gene sequence similarities to Sedimentitalea nanhaiensis NH52FT and Sedimentitalea todarodis KHS03T, respectively. The two novel strains contained Q-10 as the major quinone, and phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol and phosphatidylcholine as the principal polar lipids. The main fatty acid of strain IC7T was C19 : 0 cyclo ω8c, while the fatty acid profile JM2-8T was dominated by summed feature 8 containing C18 : 1 ω7c and/or C18 : 1 ω6c. The average nucleotide identity and digital DNA-DNA hybridization values between these two novel isolates and their closely related species were below the cut-off values of 95-96 and 70 %, respectively. The combined genotypic and phenotypic data show that strain IC7T represents a novel species of the genus Pseudodonghicola, for which the name Pseudodonghicola flavimaris sp. nov. is proposed, with the type strain IC7T (=MCCC 1A02763T=KCTC 82844T), and strain JM2-8T represents a novel species of the genus Sedimentitalea, for which the name Sedimentitalea xiamensis sp. nov. is proposed, with the type strain JM2-8T (=MCCC 1A17756T=KCTC 82846T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Ubiquinona , Composición de Base , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
18.
Int J Syst Evol Microbiol ; 73(20)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801073

RESUMEN

Two Gram-stain-negative, non-motile, non-spore-forming, strictly aerobic and rod-shaped bacterial strains, CMA-7T and CAA-3, were isolated from surface seawater samples collected from the western Pacific Ocean. Phylogeny of 16S rRNA gene sequences indicated they were related to the genera Galbibacter and Joostella and shared 95.1, 90.9 and 90.8% sequence similarity with G. mesophilus Mok-17T, J. marina DSM 19592T and G. marinus ck-I2-15T, respectively. Phylogenomic analysis showed that the two strains, together with the members of the genera Galbibacter and Joostella, formed a monophyletic clade that could also be considered a monophyletic taxon. This distinctiveness was supported by amino acid identity and percentage of conserved proteins indices, phenotypic and chemotaxonomic characteristics and comparative genomics analysis. Digital DNA‒DNA hybridization values and average nucleotide identities between the two strains and their closest relatives were 18.0-20.8 % and 77.7-79.3 %, respectively. The principal fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G, Summed Feature 3 (C16 : 1 ω7c/C16 : 1 ω6c or C16 : 1 ω6c/C16 : 1 ω7c), Summed Feature 9 (iso-C17 : 1 ω9c or C16 : 0 10-methyl), and C15 : 0 3-OH. The predominant respiratory quinone was MK-6. The polar lipids were phosphatidylethanolamine, aminolipid, aminophospholipid, phospholipid, phosphoglycolipid, glycolipid and unknown polar lipid. The genomic DNA G+C content of strains CMA-7T and CAA-3 was both 38.4 mol%. Genomic analysis indicated they have the potential to degrade cellulose and chitin. Based on the polyphasic evidence presented in this study, the two strains represent a novel species within the genus Galbibacter, for which the name Galbibacter pacificus sp. nov. is proposed. The type strain is CMA-7T (=MCCC M28999T = KCTC 92588T). Moreover, the transfer of Joostella marina to the genus Galbibacter as Galbibacter orientalis nom. nov. (type strain En5T = KCTC 12518T = DSM 19592T=CGMCC 1.6973T) is also proposed.


Asunto(s)
Ácidos Grasos , Agua de Mar , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Océano Pacífico , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , Agua de Mar/microbiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-37768178

RESUMEN

A novel Gram-stain-negative, facultatively anaerobic and heterotrophic bacterium, designated strain ZH257T, was isolated from in situ enrichment samples incubated on the seamount floor of the Western Pacific Ocean. Cells were rod-shaped, oxidase- and catalase- positive, and motile by means of polar flagella. Strain ZH257T grew at 4-37 °C (optimum, 28-32 °C), pH 6.0-9.0 (optimum, pH 7.0) and with 2.0-9.0 % (w/v) NaCl (optimum, 3.0-4.0 %). Strain ZH257T was most closely related to members of the genus Pseudophaeobacter, sharing 99.13, 98.27 and 96.89 % 16S rRNA gene sequence identities with Pseudophaeobacter flagellatus GDMCC 1.2988T, Pseudophaeobacter arcticus DSM 23566T and Pseudophaeobacter leonis DSM 25627T, respectively. The DNA G+C content was 59.2 mol%. The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain ZH257T and its closely related species were 79.61-93.04 % and 23.10-50.20 %, respectively. Strain ZH257T harboured complete denitrification and nitrate assimilation pathways. Strain ZH257T contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids (>5 %), and Q-10 as the major respiratory quinone. The polar lipid profile contained phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The combined phenotypic, genotypic and chemotaxonomic data showed that strain ZH257T represents a novel species of the genus Pseudophaeobacter, for which the name Pseudophaeobacter profundi sp. nov. is proposed, with the type strain ZH257T (=MCCC M29024T=KACC 23147T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Ácidos Grasos/química , Océano Pacífico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Filogenia , Fosfolípidos/química
20.
Environ Sci Technol ; 57(35): 13247-13257, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37615362

RESUMEN

Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.


Asunto(s)
Desnitrificación , Aguas Residuales , Nitritos , Aguas del Alcantarillado , Nitrógeno , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA