Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Fish Shellfish Immunol ; 144: 109312, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122951

RESUMEN

Immune defense functions of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) have shown obvious evolutionary divergence. MiRNAs participate in the fine regulation of immune function. However, the evolutionary adaptation of miRNAs in the regulation of immune defense function is still poorly understood in silver carp and bighead carp. Here, small RNA libraries were constructed from the spleen tissue of one-year-old and three-year-old healthy silver carp and bighead carp, 424 and 422 known conserved miRNAs were respectively identified from the spleen of silver carp and bighead carp by bioinformatic analysis, which 398 were shared between the two species. These conserved miRNAs showed highly similar expression patterns between silver carp and bighead carp, but the abundance in spleen varied greatly in different species. Family analysis showed that miRNA families including mir-8, mir-7, mir-23, mir-338, mir-30, mir-27, mir-221, mir-19, mir-181, mir-17, mir-15, mir-148, mir-130, mir-10 and let-7 were the main miRNAs in the spleen of silver carp and bighead carp. 27 and 51 significant differentially expressed (SDE) miRNAs were identified from silver carp and bighead carp, respectively. Evolution analysis for the predicted target genes of SDE-miRNAs showed that ten biological processes such as blood coagulation, cell adhesion mediated by integrin and adaptive immune response were positively selected. In addition, immune genes including TLR3, NFATC3, MALT1, B2M, GILT and MHCII were positively selected only in silver carp, and they were specifically targeted by the SDE-miRNAs including miR-9-5p, miR-196a-5p, miR-375, miR-122, miR-722, miR-132-3p, miR-727-5p, miR-724, miR-19d-5p and miR-138-5p, respectively. PLA2G4 in Fc epsilon RI signaling pathway was positively selected only in bighead carp and was specifically targeted by the SDE-miRNAs including miR-222b, miR-22b-5p, miR-15c, miR-146a, miR-125c-3p, miR-221-5p, miR-2188-5p, miR-142a-3p, miR-212, miR-138-5p and miR-15b-5p. In particular, SDE-miRNAs such as miR-144-3p, miR-2188-3p, miR-731, miR-363-3p and miR-218b could simultaneously target multiple evolutionarily differentiated immune-related genes. These results indicated that in the spleen of silver carp and bighead carp, conserved miRNAs have obvious evolutionary adaptations in the regulation of immune defense function. The results of this study can provide valuable resources for further revealing themechanism of miRNA in the formation of resistance traits evolution between silver carp and bighead carp.


Asunto(s)
Carpas , MicroARNs , Humanos , Animales , Bazo , Carpas/genética , MicroARNs/genética , Biblioteca de Genes
2.
Genomics ; 115(1): 110540, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563917

RESUMEN

Non-coding RNAs (ncRNAs) induced competing endogenous RNAs (ceRNA) play crucial roles in various biological process by regulating target gene expression. However, the studies of ceRNA networks in the regulation of ovarian ovulation processing of chicken remains deficient compared to that in mammals. Our present study revealed that circEML1 was differential expressed in hen's ovarian tissues at different ages (15 W/20 W/30 W/68 W) and identified as a loop structure from EML1 pre-mRNA, which promoted the expressions of CYP19A1/StAR and E2/P4 secretion in follicular granulosa cells (GCs). Furthermore, circEML1 could serve as a sponge of gga-miR-449a and also found that IGF2BP3 was targeted by gga-miR-449a to co-participate in the steroidogenesis, which possibly act the regulatory role via mTOR/p38MAPK pathways. Meanwhile, in the rescue experiment, gga-miR-449a could reverse the promoting role of circEML1 to IGF2BP3 and steroidogenesis. Eventually, this study suggested that circEML1/gga-miR-449a/IGF2BP3 axis exerted an important role in the steroidogenesis in GCs of chicken.


Asunto(s)
Pollos , MicroARNs , Animales , Femenino , Pollos/genética , Pollos/metabolismo , Células de la Granulosa , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , Ovario/metabolismo , Esteroides/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo
3.
BMC Genomics ; 24(1): 594, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805512

RESUMEN

BACKGROUND: The composition and content of fatty acids in the breast muscle are important factors influencing meat quality. In this study, we investigated the fatty acid composition and content in the breast muscle of Gushi chickens at different developmental stages (14 weeks, 22 weeks, and 30 weeks). Additionally, we utilized transcriptomic data from the same tissue and employed WGCNA and module identification methods to identify key genes associated with the fatty acid composition in Gushi chicken breast muscle and elucidate their regulatory networks. RESULTS: Among them, six modules (blue, brown, green, light yellow, purple, and red modules) showed significant correlations with fatty acid content and metabolic characteristics. Enrichment analysis revealed that these modules were involved in multiple signaling pathways related to fatty acid metabolism, including fatty acid metabolism, PPAR signaling pathway, and fatty acid biosynthesis. Through analysis of key genes, we identified 136 genes significantly associated with fatty acid phenotypic traits. Protein-protein interaction network analysis revealed that nine of these genes were closely related to fatty acid metabolism. Additionally, through correlation analysis of transcriptome data, we identified 51 key ceRNA regulatory networks, including six central genes, 7 miRNAs, and 28 lncRNAs. CONCLUSION: This study successfully identified key genes closely associated with the fatty acid composition in Gushi chicken breast muscle, as well as their post-transcriptional regulatory networks. These findings provide new insights into the molecular regulatory mechanisms underlying the flavor characteristics of chicken meat and the composition of fatty acids in the breast muscle.


Asunto(s)
Pollos , Ácidos Grasos , Animales , Pollos/genética , Pollos/metabolismo , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Músculos Pectorales , Redes Reguladoras de Genes
4.
BMC Genomics ; 24(1): 386, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430185

RESUMEN

BACKGROUND: The development of abdominal fat and meat quality are closely related and can impact economic efficiency. In this study, we conducted transcriptome sequencing of the abdominal fat tissue of Gushi chickens at 6, 14, 22, and 30 weeks, and selected key miRNA-mRNA regulatory networks related to abdominal fat development through correlation analysis. RESULTS: A total of 1893 differentially expressed genes were identified. Time series analysis indicated that at around 6 weeks, the development of chicken abdominal fat was extensively regulated by the TGF-ß signaling pathway, Wnt signaling pathway, and PPAR signaling pathway. However, at 30 weeks of age, the apoptosis signaling pathway was the most significant, and correlation analysis revealed several genes highly correlated with abdominal fat development, including Fatty Acid Binding Protein 5 (FABP5). Based on miRNA transcriptome data, it was discovered that miR-122-5p is a potential target miRNA for FABP5. Cell experiments showed that miR-122-5p can directly target FABP5 to promote the differentiation of preadipocytes. CONCLUSION: The present study confirms that the key gene FABP5 and its target gene miR-122-5p are critical regulatory factors in the development of chicken abdominal fat. These results provide new insights into the molecular regulatory mechanisms associated with the development of abdomen-al fat in chickens.


Asunto(s)
Grasa Abdominal , Pollos , Proteínas de Unión a Ácidos Grasos , MicroARNs , Transcriptoma , Animales , Pollos/genética , Proteínas de Unión a Ácidos Grasos/genética , MicroARNs/genética , Grasa Abdominal/crecimiento & desarrollo , Transducción de Señal , Femenino , Adipocitos , Diferenciación Celular
5.
BMC Genomics ; 24(1): 98, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864386

RESUMEN

BACKGROUND: Serum biochemical indicators are often regarded as direct reflections of animal metabolism and health. The molecular mechanisms underlying serum biochemical indicators metabolism of chicken (Gallus Gallus) have not been elucidated. Herein, we performed a genome-wide association study (GWAS) to identify the variation associated with serum biochemical indicators. The aim of this research was to broaden the understanding of the serum biochemical indicators in chickens. RESULTS: A GWAS of serum biochemical indicators was carried out on 734 samples from an F2 Gushi× Anka chicken population. All chickens were genotyped by sequencing, 734 chickens and 321,314 variants were obtained after quality control. Based on these variants, a total of 236 single-nucleotide polymorphisms (SNPs) on 9 chicken chromosomes (GGAs) were identified to be significantly (-log10(P) > 5.72) associated with eight of seventeen serum biochemical indicators. Ten novel quantitative trait locis (QTLs) were identified for the 8 serum biochemical indicator traits of the F2 population. Literature mining revealed that the ALPL, BCHE, GGT2/GGT5 genes at loci GGA24, GGA9 and GGA15 might affect the alkaline phosphatase (AKP), cholinesterase (CHE) and γ-glutamyl transpeptidase (GGT) traits, respectively. CONCLUSION: The findings of the present study may contribute to a better understanding of the molecular mechanisms of chicken serum biochemical indicator regulation and provide a theoretical basis for chicken breeding programs.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Fosfatasa Alcalina , Genotipo , Fenotipo
6.
BMC Genomics ; 24(1): 434, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537524

RESUMEN

BACKGROUND: Fatty acids composition in poultry muscle is directly related to its tenderness, flavour, and juiciness, whereas its genetic mechanisms have not been elucidated. In this study, the genetic structure and key regulatory genes of the breast muscle fatty acid composition of local Chinese chicken, Gushi-Anka F2 resource population by integrating genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) strategies. GWAS was performed based on 323,306 single nucleotide polymorphisms (SNPs) obtained by genotyping by sequencing (GBS) method and 721 chickens from the Gushi-Anka F2 resource population with highly variable fatty acid composition traits in the breast muscle. And then, according to the transcriptome data of the candidate genes that were obtained and phenotypic data of fatty acid composition traits in breast muscle of Gushi chickens at 14, 22, and 30 weeks of age, we conducted a WGCNA. RESULTS: A total of 128 suggestive significantly associated SNPs for 11 fatty acid composition traits were identified and mapped on chromosomes (Chr) 2, 3, 4, 5, 13, 17, 21, and 27. Of these, the two most significant SNPs were Chr13:5,100,140 (P = 4.56423e-10) and Chr13:5,100,173 (P = 4.56423e-10), which explained 5.6% of the phenotypic variation in polyunsaturated fatty acids (PUFA). In addition, six fatty acid composition traits, including C20:1, C22:6, saturated fatty acid (SFA), unsaturated fatty acids (UFA), PUFA, and average chain length (ACL), were located in the same QTL intervals on Chr13. We obtained 505 genes by scanning the linkage disequilibrium (LD) regions of all significant SNPs and performed a WGCNA based on the transcriptome data of the above 505 genes. Combining two strategies, 9 hub genes (ENO1, ADH1, ASAH1, ADH1C, PIK3CD, WISP1, AKT1, PANK3, and C1QTNF2) were finally identified, which could be the potential candidate genes regulating fatty acid composition traits in chicken breast muscle. CONCLUSION: The results of this study deepen our understanding of the genetic mechanisms underlying the regulation of fatty acid composition traits, which is helpful in the design of breeding strategies for the subsequent improvement of fatty acid composition in poultry muscle.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Ácidos Grasos/química , Polimorfismo de Nucleótido Simple , Músculos , Genes Reguladores
7.
BMC Genomics ; 24(1): 540, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700222

RESUMEN

BACKGROUND: Intramuscular fat (IMF) content is the major indicator for evaluating chicken meat quality due to its positive correlation with tenderness, juiciness, and flavor. An increasing number of studies are focusing on the functions of microRNAs (miRNAs) in intramuscular adipocyte differentiation. However, little is known about the association of miR-128-3p with intramuscular adipocyte differentiation. Our previous RNA-seq results indicated that miR-128-3p was differentially expressed at different periods in chicken intramuscular adipocytes, revealing a possible association with intramuscular adipogenesis. The purpose of this research was to investigate the biological functions and regulatory mechanism of miR-128-3p in chicken intramuscular adipogenesis. RESULTS: The results of a series of assays confirmed that miR-128-3p could promote the proliferation and inhibit the differentiation of intramuscular adipocytes. A total of 223 and 1,050 differentially expressed genes (DEGs) were identified in the mimic treatment group and inhibitor treatment group, respectively, compared with the control group. Functional enrichment analysis revealed that the DEGs were involved in lipid metabolism-related pathways, such as the MAPK and TGF-ß signaling pathways. Furthermore, target gene prediction analysis showed that miR-128-3p can target many of the DEGs, such as FDPS, GGT5, TMEM37, and ASL2. The luciferase assay results showed that miR-128-3p targeted the 3' UTR of FDPS. The results of subsequent functional assays demonstrated that miR-128-3p acted as an inhibitor of intramuscular adipocyte differentiation by targeting FDPS. CONCLUSION: miR-128-3p inhibits chicken intramuscular adipocyte differentiation by downregulating FDPS. Our findings provide a theoretical basis for the study of lipid metabolism and reveal a potential target for molecular breeding to improve meat quality.


Asunto(s)
Pollos , MicroARNs , Animales , Pollos/genética , Diferenciación Celular/genética , Adipogénesis/genética , Regiones no Traducidas 3' , Adipocitos , MicroARNs/genética
8.
Cell Commun Signal ; 21(1): 363, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38115126

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a devastating disease that lacks effective drugs for targeted therapy. Previously, we found that the third-generation epidermal growth factor receptor (EGFR) inhibitor AZD-9291 persistently blocked the activation of the ERK pathway but had no inhibitory effect on the phosphoinositide 3-kinase (PI3K)/Akt pathway. Given that the PI3K inhibitor GDC-0084 is being evaluated in phase I/II clinical trials of GBM treatment, we hypothesized that combined inhibition of the EGFR/ERK and PI3K/Akt pathways may have a synergistic effect in the treatment of GBM. METHODS: The synergistic effects of cotreatment with AZD-9291 and GDC-0084 were validated using cell viability assays in GBM and primary GBM cell lines. Moreover, the underlying inhibitory mechanisms were assessed through colony formation, EdU proliferation, and cell cycle assays, as well as RNA-seq analyses and western blot. The therapeutic effects of the drug combination on tumor growth and survival were investigated in mice bearing tumors using subcutaneously or intracranially injected LN229 xenografts. RESULTS: Combined treatment with AZD-9291 and GDC-0084 synergistically inhibited the proliferation and clonogenic survival, as well as induced cell cycle arrest of GBM cells and primary GBM cells, compared to monotherapy. Moreover, AZD-9291 plus GDC-0084 combination therapy significantly inhibited the growth of subcutaneous tumors and orthotopic brain tumor xenografts, thus prolonging the survival of tumor-bearing mice. More importantly, the combination of AZD-9291 and GDC-0084 simultaneously blocked the activation of the EGFR/MEK/ERK and PI3K/AKT/mTOR signaling pathways, thereby exerting significant antitumor activity. CONCLUSION: Our findings demonstrate that the combined blockade of the EGFR/MEK/ERK and PI3K/AKT/mTOR pathways is more effective against GBM than inhibition of each pathway alone, both in vitro and in vivo. Our results suggest that AZD-9291 combined with GDC-0084 may be considered as a potential treatment strategy in future clinical trials. Video Abstract.


Asunto(s)
Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Receptores ErbB/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular
9.
Genet Sel Evol ; 55(1): 73, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872550

RESUMEN

BACKGROUND: Modern breeding strategies have resulted in significant differences in muscle mass between indigenous chicken and specialized broiler. However, the molecular regulatory mechanisms that underlie these differences remain elusive. The aim of this study was to identify key genes and regulatory mechanisms underlying differences in breast muscle development between indigenous chicken and specialized broiler. RESULTS: Two time-series RNA-sequencing profiles of breast muscles were generated from commercial Arbor Acres (AA) broiler (fast-growing) and Chinese indigenous Lushi blue-shelled-egg (LS) chicken (slow-growing) at embryonic days 10, 14, and 18, and post-hatching day 1 and weeks 1, 3, and 5. Principal component analysis of the transcriptome profiles showed that the top four principal components accounted for more than 80% of the total variance in each breed. The developmental axes between the AA and LS chicken overlapped at the embryonic stages but gradually separated at the adult stages. Integrative investigation of differentially-expressed transcripts contained in the top four principal components identified 44 genes that formed a molecular network associated with differences in breast muscle mass between the two breeds. In addition, alternative splicing analysis revealed that genes with multiple isoforms always had one dominant transcript that exhibited a significantly higher expression level than the others. Among the 44 genes, the TNFRSF6B gene, a mediator of signal transduction pathways and cell proliferation, harbored two alternative splicing isoforms, TNFRSF6B-X1 and TNFRSF6B-X2. TNFRSF6B-X1 was the dominant isoform in both breeds before the age of one week. A switching event of the dominant isoform occurred at one week of age, resulting in TNFRSF6B-X2 being the dominant isoform in AA broiler, whereas TNFRSF6B-X1 remained the dominant isoform in LS chicken. Gain-of-function assays demonstrated that both isoforms promoted the proliferation of chicken primary myoblasts, but only TNFRSF6B-X2 augmented the differentiation and intracellular protein content of chicken primary myoblasts. CONCLUSIONS: For the first time, we identified several key genes and dominant isoforms that may be responsible for differences in muscle mass between slow-growing indigenous chicken and fast-growing commercial broiler. These findings provide new insights into the regulatory mechanisms underlying breast muscle development in chicken.


Asunto(s)
Pollos , Transcriptoma , Animales , Músculos , Isoformas de Proteínas/genética , Crecimiento y Desarrollo , Desarrollo de Músculos/genética
10.
Anim Biotechnol ; 34(4): 1342-1353, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35209802

RESUMEN

Long non-coding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation. LncRNAs, which are defined as non-coding RNAs more than 200 bp in length, are involved in key biological processes, such as cell proliferation and differentiation, epigenetic regulation, and gene transcriptional translation. Recent studies have shown that lncRNAs also play major regulatory roles in the reproduction of mammals. However, knowledge of the roles of lncRNAs in the chicken ovary lacking. In this study, we performed RNA-seq analyses of ovarian tissue from Hy-Line brown laying hens at four physiological stages [15, 20, 30, and 68 weeks of age (W)]. We identified 657 lncRNA transcripts that were differentially expressed during ovarian development, the number of down-regulated lncRNAs was higher than the number of up-regulated lncRNAs during development. We predicted the cis and trans target genes of the DE lncRNAs and constructed a lncRNA-mRNA interaction network, which indicated that the DE genes (DEGs) and the target genes of the DE lncRNAs are mainly involved in signaling pathways associated with ovarian development, including oocyte meiosis, calcium signaling pathways, ECM-receptor interactions, and ribosome and focal adhesion. Overall, we found that twelve lncRNAs were strongly involved in ovarian development: LNC_013443, LNC_001029, LNC_005713, LNC_016762, ENSGALT00000101857, LNC_003913, LNC_013692, LNC_012219, LNC_004140, ENSGALT00000096941, LNC_009356, and ENSGALT00000098716. In summary, our study utilized RNA-seq analysis of hen ovaries to explore key lncRNAs involved in ovarian development and function. Furthermore, the comprehensive analysis identified the target genes of these lncRNAs providing a better understanding of the mechanisms underlying ovarian development in hens and a theoretical basis for further research.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Animales , Femenino , Transcriptoma/genética , Ovario/metabolismo , Pollos/genética , Pollos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Epigénesis Genética , Mamíferos/genética , Mamíferos/metabolismo
11.
Aquac Nutr ; 2023: 1232518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780581

RESUMEN

In this study, we screened the expression stability of six reference genes (18S rRNA, ß-actin, GAPDH, EF1a, B2M, and HPRT1) in hybrid yellow catfish (n = 6), considering the SBM levels, sampling time points, and different tissues. Four different statistical programs, BestKeeper, NormFinder, Genorm, and Delta Ct, combined with a method that comprehensively considered all results, were used to evaluate the expression stability of these reference genes systematically. The results showed that SBM levels significantly impacted the expression stability of most of the reference genes studied and that this impact was time-, dose-, and tissue-dependent. The expression stability of these six reference genes varied depending on tissue, sampling time point, and SBM dosage. Additionally, more variations were found among different tissues than among different SBM levels or sampling time points. Due to its high expression, 18S rRNA was excluded from the list of candidate reference genes. ß-actin and GAPDH in the liver and ß-actin, HPRT1 and EF1a in the intestine were the most stable reference genes when SBM levels were considered. HPRT1, and EF1a in tissues sampled at 2 W and EF1a and ß-actin in tissues sampled at 4 and 6 W were proposed as two stable reference genes when different tissues were considered. When the sampling time points were considered, ß-actin, EF1a, and HPRT1 were the top three stable reference genes in the intestine. In contrast, ß-actin and B2M are the most stable reference genes in the liver. In summary, ß-actin, EF1a, and HPRT1 were the more stable reference genes in this study. The stability of reference genes depends on the tissues, sampling time points, and SBM diet levels in hybrid yellow catfish. Therefore, attention should be paid to these factors before selecting suitable reference genes for normalizing the target genes.

12.
BMC Genomics ; 23(1): 258, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379193

RESUMEN

BACKGROUND: The characteristics of muscle fibers determine the growth and meat quality of poultry. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on the muscle fiber characteristics and transcriptome profile of the breast muscle tissue of Gushi chicken at 6, 14, 22, and 30 weeks. RESULTS: A total of 27 coexpressed biological functional modules were identified, of which the midnight blue module had the strongest correlation with muscle fiber and diameter. In addition, 7 hub genes were found from the midnight blue module, including LC8 dynein light chain 2 (DYNLL2). Combined with miRNA transcriptome data, miR-148a-3p was found to be a potential target miRNA of DYNLL2. Experiments on chicken primary myoblasts (CPMs) demonstrated that miR-148a-3p promotes the expression of myosin heavy chain (MYHC) protein by targeting DYNLL2, proving that it can promote differentiation of myoblasts. CONCLUSIONS: This study proved that the hub gene DYNLL2 and its target miR-148-3p are important regulators in chicken myogenesis. These results provide novel insights for understanding the molecular regulation mechanisms related to the development of chicken breast muscle.


Asunto(s)
Pollos , MicroARNs , Animales , Pollos/genética , Redes Reguladoras de Genes , MicroARNs/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas
13.
Mol Biol Evol ; 38(11): 5066-5081, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34329477

RESUMEN

Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional approximately 66.5-Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression levels are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based genome-wide association studies identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size quantitative trait locus located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Tamaño Corporal/genética , Pollos/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo
14.
Appl Opt ; 61(35): 10567-10573, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36607119

RESUMEN

Strain measurement has important applications in mechanical engineering, civil engineering, aerospace, earthquake monitoring, and other fields. Aiming at the problem of low sensitivity of existing fiber Bragg grating (FBG) strain sensors, a high-sensitivity FBG strain sensor of the substrate type with a sensitization structure is proposed. The sensitivity of the sensor is analyzed theoretically, the sensor is simulated by Solidworks and ANSYS software, and the structural parameters are optimized. According to the simulation results, the real sensor is developed, and the strain test system is built to test the performance of the sensor. The results show that the strain sensitivity of the sensor is 3.21p m/µÎµ, which is about 2.7 times that of the bare FBG strain sensor, which is basically in line with the theoretical value. The fitting linear correlation coefficient is 0.9999, and the repeatability error is 3.9%FS. The research results provide a reference for developing the same type of sensors and further improving the sensitivity of fiber strain sensors.

15.
BMC Genomics ; 22(1): 44, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422015

RESUMEN

BACKGROUND: Chicken skeletal muscle is an important economic product. The late stages of chicken development constitute the main period that affects meat production. LncRNAs play important roles in controlling the epigenetic process of growth and development. However, studies on the role of lncRNAs in the late stages of chicken breast muscle development are still lacking. In this study, to investigate the expression characteristics of lncRNAs during chicken muscle development, 12 cDNA libraries were constructed from Gushi chicken breast muscle samples from 6-, 14-, 22-, and 30-week-old chickens. RESULTS: A total of 1252 new lncRNAs and 1376 annotated lncRNAs were identified. Furthermore, 53, 61, 50, 153, 117, and 78 DE-lncRNAs were found in the W14 vs. W6, W22 vs. W14, W22 vs. W6, W30 vs. W6, W30 vs. W14, and W30 vs. W22 comparison groups, respectively. After GO enrichment analysis of the DE-lncRNAs, several muscle development-related GO terms were found in the W22 vs. W14 comparison group. Moreover, it was found that the MAPK signaling pathway was one of the most frequently enriched pathways in the different comparison groups. In addition, 12 common target DE-miRNAs of DE-lncRNAs were found in different comparison groups, some of which were muscle-specific miRNAs, such as gga-miR-206, gga-miR-1a-3p, and miR-133a-3p. Interestingly, the precursors of four newly identified miRNAs were found to be homologous to lncRNAs. Additionally, we found some ceRNA networks associated with muscle development-related GO terms. For example, the ceRNA networks contained the DYNLL2 gene with 12 lncRNAs that targeted 2 miRNAs. We also constructed PPI networks, such as IGF-I-EGF and FZD6-WNT11. CONCLUSIONS: This study revealed, for the first time, the dynamic changes in lncRNA expression in Gushi chicken breast muscle at different periods and revealed that the MAPK signaling pathway plays a vital role in muscle development. Furthermore, MEF2C and its target lncRNA may be involved in muscle regulation through the MAPK signaling pathway. This research provided valuable resources for elucidating posttranscriptional regulatory mechanisms to promote the development of chicken breast muscles after hatching.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Pollos/genética , China , Redes Reguladoras de Genes , MicroARNs/genética , Músculo Esquelético , ARN Largo no Codificante/genética
16.
Langmuir ; 37(49): 14336-14344, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34856797

RESUMEN

To reduce the corrosion of Q235 steel, environment-friendly and efficient N-doped carbon dots (N-CDs) were synthesized using 4-amino salicylic acid (4-ASA) and l-histidine (l-His) as precursors. The corrosion inhibition behavior of N-CDs for Q235 steel in 1 M HCl solution was systematically investigated using a weight-loss experiment, an electrochemical test, and corrosion morphology. Results showed that N-CDs could effectively inhibit the corrosion of Q235 steel, and the inhibitory efficiency reached 93% at 50 mg L-1. Quantum chemistry and molecular dynamics were used to study the inhibition mechanism of N-CDs. The results demonstrated that N-CDs exhibited a strong adsorption force on metal and the adsorption process followed the Langmuir adsorption isotherm, indicating physical/chemical mixed adsorption.


Asunto(s)
Carbono , Acero , Adsorción , Corrosión , Metales
17.
Heredity (Edinb) ; 126(2): 293-307, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32989280

RESUMEN

Chicken growth traits are economically important, but the relevant genetic mechanisms have not yet been elucidated. Herein, we performed a genome-wide association study to identify the variants associated with growth traits. In total, 860 chickens from a Gushi-Anka F2 resource population were phenotyped for 68 growth and carcass traits, and 768 samples were genotyped based on the genotyping-by-sequencing (GBS) method. Finally, 734 chickens and 321,314 SNPs remained after quality control and removal of the sex chromosomes, and these data were used to carry out a GWAS analysis. A total of 470 significant single-nucleotide polymorphisms (SNPs) for 43 of the 68 traits were detected and mapped on chromosomes (Chr) 1-6, -9, -10, -16, -18, -23, and -27. Of these, the significant SNPs in Chr1, -4, and -27 were found to be associated with more than 10 traits. Multiple traits shared significant SNPs, indicating that the same mutation in the region might have a large effect on multiple growth or carcass traits. Haplotype analysis revealed that SNPs within the candidate region of Chr1 presented a mosaic pattern. The significant SNPs and pathway enrichment analysis revealed that the MLNR, MED4, CAB39L, LDB2, and IGF2BP1 genes could be putative candidate genes for growth and carcass traits. The findings of this study improve our understanding of the genetic mechanisms regulating chicken growth and carcass traits and provide a theoretical basis for chicken breeding programs.


Asunto(s)
Pollos , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Estudios de Asociación Genética/veterinaria , Determinismo Genético , Genotipo , Fenotipo
18.
Mol Biol Rep ; 48(1): 491-502, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33398680

RESUMEN

Our previous studies have shown that miR-125b-5p was highly expressed and significantly upregulated during abdominal fat deposition in chickens. However, the role of miR-125b in the regulation of adipogenesis is not clear in chickens. Therefore, we evaluated the effects of miR-125b-5p on preadipocyte proliferation and differentiation and the interaction between miR-125b-5p and the acyl-CoA synthetase bubblegum family member 2 (ACSBG2) gene in adipogenesis in chicken abdominal adipose tissue. Here, transfection tests of miR-125b-5p mimic/inhibitor were performed in preadipocytes, and the effects of miR-125b-5p on preadipocytes proliferation and differentiation were analyzed. The target site of miR-125b-5p in the 3'UTR (untranslated region) of ACSBG2 were verified by a luciferase reporter assay. Our results showed that miR-125b-5p overexpression inhibited proliferation and reduced the number of cells in S phase and G2/M phase in preadipocytes; conversely, miR-125b-5p inhibition promoted the proliferation and increased the number of cells in S phase and G2/M phase. In adipocytes after induction, miR-125b-5p overexpression led to a notable increase in the accumulation of lipid droplets as well as in the concentration of triglycerides, while miR-125b-5p inhibition had the opposite effect. Furthermore, miR-125b-5p could directly bind to the 3'UTR of ACSBG2, and its overexpression could significantly repress the mRNA and protein expression of ACSBG2. These results indicate that miR-125b-5p can inhibit preadipocyte proliferation and can promote preadipocyte differentiation to affect adipogenesis in chicken abdominal adipose tissues, at least partially by downregulating ACSBG2.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Pollos/genética , MicroARNs/genética , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proliferación Celular/genética , Pollos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica
19.
BMC Genomics ; 21(1): 511, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703156

RESUMEN

BACKGROUND: Domesticated chickens have a wide variety of phenotypes, in contrast with their wild progenitors. Unlike other chicken breeds, Xichuan black-bone chickens have blue-shelled eggs, and black meat, beaks, skin, bones, and legs. The breeding history and the economically important traits of this breed have not yet been explored at the genomic level. We therefore used whole genome resequencing to analyze the breeding history of the Xichuan black-bone chickens and to identify genes responsible for its unique phenotype. RESULTS: Principal component and population structure analysis showed that Xichuan black-bone chicken is in a distinct clade apart from eight other breeds. Linkage disequilibrium analysis showed that the selection intensity of Xichuan black-bone chickens is higher than for other chicken breeds. The estimated time of divergence between the Xichuan black-bone chickens and other breeds is 2.89 ka years ago. Fst analysis identified a selective sweep that contains genes related to melanogenesis. This region is probably associated with the black skin of the Xichuan black-bone chickens and may be the product of long-term artificial selection. A combined analysis of genomic and transcriptomic data suggests that the candidate gene related to the black-bone trait, EDN3, might interact with the upstream ncRNA LOC101747896 to generate black skin color during melanogenesis. CONCLUSIONS: These findings help explain the unique genetic and phenotypic characteristics of Xichuan black-bone chickens, and provide basic research data for studying melanin deposition in animals.


Asunto(s)
Pollos , Animales , Pollos/genética , Desequilibrio de Ligamiento , Carne , Polimorfismo de Nucleótido Simple
20.
Anim Biotechnol ; 31(3): 229-236, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31039664

RESUMEN

MiRNAs are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. SNPs in miRNA genes may lead to phenotypic variation by altering miRNA expression and their targets. In this study, miR-1704 expression profiles in nine tissues at 1 d, 6 weeks and 16 weeks old Gushi chickens were detected. MiR-1704 was widely expressed in the detection of tissues. The expression in 1 d and 6 weeks old was low abundance, while its expression at 16 weeks was very high. An rs14668705 (C > G) SNP was detected within the pre-miR-1704 in an F2 resource population of Gushi chicken crossed with Anka broiler. Bioinformatic analysis indicated that the C > G mutation could introduce a base-pair mismatch and cause the change of free energy. Experiments further revealed that the rs14668705 in precursor miR-1704 could significantly affect mature miR-1704 biogenesis and was significantly associated with body weight at the age of 0, 6, 8, 10, and 12 weeks, shank circumference at 4, 8, and 12 weeks, carcass weight, and semi-evisceration weight (p < 0.05). Insulin receptor 2 (IRS2) gene, one of the potential targets of miR-1704 was identified and further confirmed. These data suggested that miR-1704 targeted IRS2 and have an effect on body weight in chicken.


Asunto(s)
Pollos/genética , MicroARNs/genética , Animales , Peso Corporal/genética , Biología Computacional , Hígado/química , MicroARNs/análisis , MicroARNs/metabolismo , Músculo Esquelético/química , Mutación/genética , Especificidad de Órganos , Polimorfismo de Nucleótido Simple/genética , Bazo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA