Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 944
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(2): 243-257.e25, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388409

RESUMEN

Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Animales , Blastocisto/citología , Línea Celular , Quimera/metabolismo , Dimetindeno/farmacología , Humanos , Indicadores y Reactivos/química , Ratones , Minociclina/química , Minociclina/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
2.
Nature ; 577(7788): 109-114, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31827280

RESUMEN

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways1. Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development2,3. However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomal-dominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients' peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


Asunto(s)
Caspasa 8/metabolismo , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Niño , Preescolar , Femenino , Células HEK293 , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
Hepatology ; 79(3): 589-605, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695548

RESUMEN

BACKGROUND AND AIMS: Immune cells play a crucial role in liver aging. However, the impact of dynamic changes in the local immune microenvironment on age-related liver injury remains poorly understood. We aimed to characterize intrahepatic immune cells at different ages to investigate key mechanisms associated with liver aging. APPROACH AND RESULTS: We carried out single-cell RNA sequencing on mouse liver tissues at 4 different ages, namely, the newborn, suckling, young, and aged stages. The transcriptomic landscape, cellular classification, and intercellular communication were analyzed. We confirmed the findings by multiplex immunofluorescence staining, flow cytometry, in vitro functional experiments, and chimeric animal models. Nine subsets of 89,542 immune cells with unique properties were identified, of which Cxcl2+ macrophages within the monocyte/macrophage subset were preferentially enriched in the aged liver. Cxcl2+ macrophages presented a senescence-associated secretory phenotype and recruited neutrophils to the aged liver through the CXCL2-CXCR2 axis. Through the secretion of IL-1ß and TNF-α, Cxcl2+ macrophages stimulated neutrophil extracellular traps formation. Targeting the CXCL2-CXCR2 axis limited the neutrophils migration toward the liver and attenuated age-related liver injury. Moreover, the relationship between Cxcl2+ macrophages and neutrophils in age-related liver injury was further validated by human liver transplantation samples. CONCLUSIONS: This in-depth study illustrates that the mechanism of Cxcl2+ macrophage-driven neutrophil activation involves the CXCL2-CXCR2 axis and provides a potential therapeutic strategy for age-related liver injury.


Asunto(s)
Hígado , Neutrófilos , Ratones , Animales , Recién Nacido , Humanos , Anciano , Quimiocina CXCL2 , Macrófagos , Envejecimiento
4.
Mol Ther ; 32(3): 637-645, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38204163

RESUMEN

N-Acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) therapies have received approval for treating both orphan and prevalent diseases. To improve in vivo efficacy and streamline the chemical synthesis process for efficient and cost-effective manufacturing, we conducted this study to identify better designs of GalNAc-siRNA conjugates for therapeutic development. Here, we present data on redesigned GalNAc-based ligands conjugated with siRNAs against angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)), two target molecules with the potential to address large unmet medical needs in atherosclerotic cardiovascular diseases. By attaching a novel pyran-derived scaffold to serial monovalent GalNAc units before solid-phase oligonucleotide synthesis, we achieved increased GalNAc-siRNA production efficiency with fewer synthesis steps compared to the standard triantennary GalNAc construct L96. The improved GalNAc-siRNA conjugates demonstrated equivalent or superior in vivo efficacy compared to triantennary GalNAc-conjugated siRNAs.


Asunto(s)
Enfermedades Cardiovasculares , Hepatocitos , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Análisis Costo-Beneficio , ARN Bicatenario , Acetilgalactosamina/química , Proteína 3 Similar a la Angiopoyetina
5.
Nano Lett ; 24(29): 8818-8825, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985501

RESUMEN

Stationary energy storage infrastructure based on zinc-ion transport and storage chemistry is attracting more attention due to favorable metrics, including cost, safety, and recycling feasibility. However, splitting water and liquid electrolyte fluidity lead to cathode dissolution and Zn corrosion, resulting in rapid attenuation of the capacity and service life. Herein, a new architecture of solid-state electrolytes with high zinc ionic conductivity at room temperature was prepared via solidification of deep eutectic solvents utilizing MXene as nucleation additives. The ionic conductivity of MXene/ZCEs reached 6.69 × 10-4 S cm-1 at room temperature. Dendrite-free Zn plating/stripping with high reversibility can remain for over 2500 h. Subsequently, the fabricated solid-state zinc-ion battery with eliminated HER and suppressed Zn dendrites exhibited excellent cycling performance and could work normally in a range from -10 to 60 °C. This design inspired by eutectic solidification affords new insights into the multivalent solid electrochemistry suffering from slow ion migration.

6.
Clin Immunol ; 269: 110394, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39481740

RESUMEN

Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive autoinflammatory disease characterised by early onset stroke, recurrent fever, and diverse vascular pathologies, caused by loss-of-function homozygous or compound heterozygous variants of ADA2. This research aimed to determine the carrier frequency and expected incidence of DADA2 in China, using massive exome sequencing (ES) data. A total of 50 likely pathogenic/pathogenic variants (LP/PVs) were identified among 69,413 Chinese individuals, including 20 novel and rare variants (<0.0022 % allele frequency), expanding the known spectrum of PVs in ADA2. The overall carrier frequency in the Chinese population was 1.05 % (732/69,413) and the estimated incidence of DADA2 was approximately one in 92,251 individuals. The present study provides an accurate estimation of the prevalence of DADA2 in China, supporting genetic counseling, early diagnosis treatment, and prognostic evaluation.

7.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802927

RESUMEN

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Asunto(s)
Acuaporina 4 , Astrocitos , Eje Cerebro-Intestino , Hiperamonemia , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Acuaporina 4/biosíntesis , Astrocitos/metabolismo , Hiperamonemia/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo , Masculino , Eje Cerebro-Intestino/fisiología , Ratones Endogámicos C57BL , Amoníaco/metabolismo , Amoníaco/sangre , Encéfalo/metabolismo , Trasplante de Microbiota Fecal
8.
Small ; : e2405113, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440668

RESUMEN

Zwitterionic membranes demonstrate excellent antifouling property in water purification. The covalent organic frameworks (COFs), due to the ordered channels and abundant organic functional groups, have distinct superiority in constructing zwitterionic surfaces.Here, the zwitterionic COF membrane is prepared with precise framework structures and uniform charge distribution. The negatively charged 4,4'-diaminobiphenyl-2,2'-sisulphonic acid sodium (SA) and positively charged ethidium bromide (EB) fragments are used to react with 1,3,5-triformylphloroglucinol (TP) at the gas-liquid interface to prepare zwitterionic COF membrane. The complementary charged fragments in the inter-layer and inner-layer facilitate the formation of continuous and tight hydration layer on the membrane surface and pore walls to resist the adsorption of pollutants. The zwitterionic COF membrane effectively resists both negatively charged bovine serum albumin and positively charged lysozyme pollutants with flux recovery ratio (FRR) of 97% and 85%, respectively. Furthermore, the regular nano-channels and balanced interactions between water and surface/pore walls of the zwitterionic membrane result in outstanding permeability of up to 146 L m-2 h-1 bar-1 and excellent dye/salt separation selectivity. The water permeation and antifouling mechanism of membranes are elucidated by experimental and molecular dynamics calculation. Zwitterionic COF membranes can find promising applications in preparing high-performance antifouling membranes.

9.
Small ; 20(28): e2309321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528424

RESUMEN

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

10.
Clin Exp Immunol ; 215(2): 148-159, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-37971356

RESUMEN

To investigate the relationship between immune dynamic and graft-versus-host-disease (GVHD) risk, 111 initial diagnostic acute myeloid leukemia patients were reviewed. The flow cytometry data of 12 major lymphocyte subsets in bone marrow (BM) from 60 transplant patients at four different time points were analyzed. Additionally, 90 immune subsets in peripheral blood (PB) of 11 post-transplantation on day 100 were reviewed. Our results demonstrated that transplant patients had longer OS compared to non-transplant patients (P < 0.001). Among transplant patients, those who developed GVHD showed longer OS than those without GVHD (P < 0.05). URD donors and CMV-negative status donors were associated with improved OS in transplant patients (P < 0.05). Importantly, we observed a decreased Th/Tc ratio in BM at initial diagnostic in patients with GVHD compared to those without GVHD (P = 0.034). Receiver operating characteristic analysis indicated that a low Th/Tc ratio predicted an increased risk of GVHD with a sensitivity of 44.44% and specificity of 87.50%. Moreover, an increased T/NK ratio in BM of post-induction chemotherapy was found to be associated with GVHD, with a sensitivity of 75.76% and specificity of 65.22%. Additionally, we observed a decreased percentage of NK1 (CD56-CD16+NK) in PB on day 100 post-transplantation in the GVHD group (P < 0.05). These three indicators exhibit promising potential as specific and useful biomarkers for predicting GVHD. These findings provide valuable insights for the early identification and management of GVHD risk, thereby facilitating the possibility of improving patient outcomes.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Trasplante de Médula Ósea/efectos adversos , Trasplante de Médula Ósea/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante Homólogo , Estudios Retrospectivos
11.
Clin Chem ; 70(6): 820-829, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517460

RESUMEN

BACKGROUND: Optical genome mapping (OGM) is a novel assay for detecting structural variants (SVs) and has been retrospectively evaluated for its performance. However, its prospective evaluation in prenatal diagnosis remains unreported. This study aimed to prospectively assess the technical concordance of OGM with standard of care (SOC) testing in prenatal diagnosis. METHODS: A prospective cohort of 204 pregnant women was enrolled in this study. Amniotic fluid samples from these women were subjected to OGM and SOC testing, which included chromosomal microarray analysis (CMA) and karyotyping (KT) in parallel. The diagnostic yield of OGM was evaluated, and the technical concordance between OGM and SOC testing was assessed. RESULTS: OGM successfully analyzed 204 cultured amniocyte samples, even with a cell count as low as 0.24 million. In total, 60 reportable SVs were identified through combined OGM and SOC testing, with 22 SVs detected by all 3 techniques. The diagnostic yield for OGM, CMA, and KT was 25% (51/204), 22.06% (45/204), and 18.14% (37/204), respectively. The highest diagnostic yield (29.41%, 60/204) was achieved when OGM and KT were used together. OGM demonstrated a concordance of 95.56% with CMA and 75.68% with KT in this cohort study. CONCLUSIONS: Our findings suggest that OGM can be effectively applied in prenatal diagnosis using cultured amniocytes and exhibits high concordance with SOC testing. The combined use of OGM and KT appears to yield the most promising diagnostic outcomes.


Asunto(s)
Diagnóstico Prenatal , Humanos , Femenino , Embarazo , Estudios Prospectivos , Diagnóstico Prenatal/métodos , Adulto , Cariotipificación , Mapeo Cromosómico , Líquido Amniótico/química , Líquido Amniótico/citología
12.
Rev Endocr Metab Disord ; 25(2): 339-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38055160

RESUMEN

Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , ADN
13.
Mol Psychiatry ; 28(1): 448-462, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481931

RESUMEN

The incubation phenomenon, cue-induced drug craving progressively increasing over prolonged withdrawal, accounts for persistent relapse, leading to a dilemma in the treatment of cocaine addiction. The role of neuronal ensembles activated by initial cocaine experience in the incubation phenomenon was unclear. In this study, with cocaine self-administration (SA) models, we found that neuronal ensembles in the nucleus accumbens shell (NAcSh) showed increasing activation induced by cue-induced drug-seeking after 30-day withdrawal. Inhibition or activation of NAcSh cocaine-ensembles suppressed or promoted craving for cocaine, demonstrating a critical role of NAcSh cocaine-ensembles in incubation for cocaine craving. NAcSh cocaine-ensembles showed a specific increase of membrane excitability and a decrease of inward rectifying channels Kir2.1 currents after 30-day withdrawal. Overexpression of Kir2.1 in NAcSh cocaine-ensembles restored neuronal membrane excitability and suppressed cue-induced drug-seeking after 30-day withdrawal. Expression of dominant-negative Kir2.1 in NAcSh cocaine-ensembles enhanced neuronal membrane excitability and accelerated incubation of cocaine craving. Our results provide a cellular mechanism that the downregulation of Kir2.1 functions in NAcSh cocaine-ensembles induced by prolonged withdrawal mediates the enhancement of ensemble membrane excitability, leading to incubation of cocaine craving.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Cocaína/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Ansia/fisiología , Señales (Psicología) , Regulación hacia Abajo , Comportamiento de Búsqueda de Drogas/fisiología , Núcleo Accumbens/metabolismo , Autoadministración
14.
Langmuir ; 40(25): 13155-13166, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38860974

RESUMEN

The development of heterostructured anode materials provides an effective approach for enhancing the electrochemical performance of sodium-ion batteries (SIBs). In this work, ab initio molecular dynamics simulations and first-principles calculations are employed to investigate the Na-ion intercalation and diffusion in MXene/graphene oxide heterostructures. The influence of graphene oxidation on interlayer spacing, Na-ion diffusion kinetics, and transport mechanisms is examined at an atomic scale. It has been observed that oxygen functional groups can increase the interspacing between adjacent layers, thereby improving the initial embedding of Na ions. However, overoxidation causes an obstructive effect on the ionic conduction channels. An appropriate oxidation degree enables optimal Na-ion migration kinetics while retaining structural integrity. Our simulation results provide crucial insights into the rational design of high-performance MXene-based anodes for SIBs with excellent capacity and cycling stability.

15.
J Sleep Res ; : e14191, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499503

RESUMEN

Maternal sleep is closely related to subsequent gestational diabetes mellitus (GDM) in natural pregnancies. However, whether this connection exists in pregnant women conceiving with the help of assisted reproductive technology (ART) has not been confirmed. Hence, in this study, we evaluated whether early pregnancy sleep duration or sleep quality is associated with gestational diabetes mellitus in ART-pregnant women, as well as the influence of maternal age on this association. This prospective birth cohort study included 856 pregnant women who successfully conceived with the help of ART treatment. The sleep parameters of ART-pregnant women were assessed using the Pittsburgh Sleep Quality Index (PSQI) in early pregnancy. We explored the association between sleep and the risk of gestational diabetes mellitus using an unconditional binary logistic regression model. Different models were constructed to examine the robustness of the estimation by incorporating different confounding factors. Multivariable logistic regression revealed that sleep duration of more than 10 h among ART-pregnant women was significantly associated with the risk of GDM, and the association between sleep duration and gestational diabetes mellitus varied by maternal age. We found an increased risk of subsequent gestational diabetes mellitus with increasing sleep duration only in pregnant women aged <35 years. Additionally, no statistically significant association between sleep quality and gestational diabetes mellitus was found in this study. In conclusion, excessive sleep duration (≥10 h) is associated with a high risk of gestational diabetes mellitus in pregnant women who conceived with the help of assisted reproductive technology, and maternal age may modify this effect.

16.
Biomarkers ; 29(2): 105-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38376506

RESUMEN

BACKGROUND: Although Osteopontin (OPN) has been reported to be associated with many different human cancers, the data on non-small cell lung cancer (NSCLC) are not definitive. This study aimed to explore the prognostic effect of OPN expression and clinicopathological characteristics in patients with NSCLC. METHODS: This study followed all aspects of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) report. PubMed, Embase and the Cochrane Library were searched to identify the relative studies. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to estimate the prognostic value of the OPN in patients with NSCLC. The odds ratio (OR) was calculated to represent the relationship between OPN expression and clinicopathological parameters. RESULTS: A total of fifteen studies with 2173 participants were finally included. The results revealed that high expression of OPN was significantly associated with poorer overall survival (OS) (HR = 1.89; 95%CI = 1.68-2.11; p < 0.001). Moreover, a significant correlation was observed between increased OPN expression and poorly differentiated (well and moderately differentiated vs. poorly differentiated; pooled OR = 0.38; 95% CI = 0.23-0.64; p < 0.001), lymph node metastasis (absence vs. presence; pooled OR = 0.49; 95%CI = 0.32-0.74; p < 0.001), and distant metastasis (absence vs. presence; pooled OR = 0.18; 95%CI = 0.11-0.29; p < 0.001). CONCLUSION: This meta-analysis implies that OPN might be a valuable biomarker for a poor prognosis and poor clinicopathological outcomes for patients with NSCLC.


Our findings suggest that osteopontin is an important biomarker for poor prognosis and poor clinicopathological outcome in Non-small cell lung cancer (NSCLC) patients.Increased expression of osteopontin in NSCLC patients is associated not only with poorer survival but also with tumor differentiation, lymph node metastasis, and distant metastasis.This may be due to that osteopontin promotes multiple pathological processes including cancer cell proliferation, invasion, tumor progression, and metastasis in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Pronóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Osteopontina/análisis , Biomarcadores de Tumor/análisis
17.
Inorg Chem ; 63(20): 9326-9331, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38703124

RESUMEN

Incorporating a functional unit into the multidimensional coordination polymer skeleton is an efficient way to improve the stability of materials and expand their application. In this paper, anionic copper iodide inorganic functional modules are incorporated into one-dimensional extended chains by using a unique bidentate cationic organic ligand. Benefiting from the ionic extended structure, the resulting hybrid possesses a remarkable stability with a decomposition temperature as high as 300 °C. Meanwhile, the hybrid material exhibits intrinsic greenish white-light emission with a high photoluminescent quantum yield of 70%. The emission was investigated by temperature-dependent emission spectra, which proved to be the result of the synergistic effect of two energy states. The novel synthetic strategy provides an efficient route for the development of functional organic metal halides.

18.
Inorg Chem ; 63(34): 15592-15598, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39110766

RESUMEN

Zero-dimensional organic antimony halides have attracted significant attention recently due to their structural variety, tunable optical properties, and high luminescence efficiency. Here, a new series of antimony bromide hybrid structures with seesaw [SbBr4] and pyramidal [SbBr5] geometries are reported with low band gaps and blue-light excited red emissions. Their luminescence is attributed to self-trapped excitons with a broadband emission of a large Stokes shift. Their photoluminescence signal is sensitive to water molecules, with a reversible positive correlation in a relative humidity range of 30-90%, enabling them as potential materials for real-time, self-consistent humidity sensors.

19.
BMC Infect Dis ; 24(1): 794, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112970

RESUMEN

BACKGROUND: COVID-19 is a new infectious disease. To investigate whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increases the adverse reactions of subcutaneous specific immunotherapy (SCIT) in children. METHODS: This study was conducted by collecting relevant data from children who underwent house dust mite SCIT from April 3, 2021, to March 18, 2023, including information on the time of COVID-19 infection, symptoms, and adverse reactions after each allergen injection. A mixed effects model was used to analyze the changes in adverse reactions before and after the COVID-19 infection. RESULTS: Among the records of adverse reactions from 2658 injections in 123 children who underwent SCIT, the overall adverse reaction rate before COVID-19 infection was 39.8% and 30.0% after COVID-19 infection. Compared with pre-infection with COVID-19, the risks of overall adverse reactions, local adverse reactions, and systemic adverse reactions of immunotherapy after COVID-19 infection were reduced (odds ratio [OR] = 0.24, 0.31, and 0.28, all P < 0.05). Among the local adverse reactions, the incidence of the unvaccinated group was the highest (15.3% vs. 7.1%). The incidence of overall and local adverse reactions to SCIT decreased in 2-vaccinated COVID-19 recipients (OR = 0.29-0.31, P < 0.05). CONCLUSIONS: In children, SARS-CoV-2 infection does not increase the incidence of adverse reactions to SCIT. This finding can provide a basis for the implementation of allergen-specific immunotherapy (AIT) during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Desensibilización Inmunológica , SARS-CoV-2 , Humanos , COVID-19/terapia , COVID-19/inmunología , Niño , Estudios Retrospectivos , Masculino , Femenino , Preescolar , SARS-CoV-2/inmunología , Inyecciones Subcutáneas , Desensibilización Inmunológica/efectos adversos , Desensibilización Inmunológica/métodos , Adolescente , Animales , Pyroglyphidae/inmunología , Alérgenos/inmunología , Alérgenos/efectos adversos , Alérgenos/administración & dosificación , Lactante
20.
Phys Chem Chem Phys ; 26(24): 17359-17369, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860664

RESUMEN

Boron-doped graphdiyne (B-GDY) material exhibits an excellent performance in electrocatalysis, ion transport, and energy storage. However, accurately identifying the structures of B-GDY in experiments remains a challenge, hindering further selection of suitable structures with the most ideal performance for various practical applications. In the present work, we employed density functional theory (DFT) to simulate the X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectra of pristine graphdiyne (GDY) and six representative single boron-doped graphdiynes at the B and C K-edges to establish the structure-spectroscopy relationship. A notable disparity in the C 1s ionization potentials (IPs) between substituted and adsorbed structures is observed upon doping with a boron atom. By analyzing the C and B 1s NEXAFS spectra on energy positions, spectral widths, spectral intensities, and different spectral profiles, we found that the six single boron-doped graphdiyne configurations can be sensitively identified. Moreover, this study provides a reliable theoretical reference for distinguishing different single boron-doped graphdiyne structures, enabling accurate selection of B-GDY structures for diverse practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA