Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Opt Express ; 32(4): 6507-6519, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439351

RESUMEN

With the increasing demand for communication capacity, all-optical regeneration of multimode signals is a helpful technology of network nodes and optical signal processors. However, the difficulty of regenerating signal in higher-order modes hinders the practical application of multimode all-optical regenerators. In this study, we experimentally demonstrate the 40 Gb/s all-optical regeneration of NRZ-OOK signal in TE0 and TE1 modes via four-wave mixing (FWM) in the low-loss silicon-based nanowaveguide. By optimizing the parameters of waveguide section to enhance FWM conversion efficiency of two modes, and introducing Euler bending to reduce crosstalk between modes, the transmission loss of the silicon waveguide is 0.3 dB/cm, and the FWM conversion efficiency of the multimode regenerator is as high as -9.6 dB (TE0) and -13.0 dB (TE1). Both modes achieve extinction ratio enhancement of about 6 dB after regeneration. This silicon-based all-optical regenerator has great application potential in all-optical signal processing systems.

2.
Pharmacol Res ; 206: 107278, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908613

RESUMEN

Accumulating evidence has proved the close association between alterations in gut microbiota and resistance to chemotherapeutic drugs. However, the potential roles of gut microbiota in regulating oxaliplatin sensitivity in gastric cancer (GC) have not been investigated before. We first found that antibiotic treatment diminished the therapeutic efficacy of oxaliplatin in a GC mouse model. Importantly, this effect could be transmitted to germ-free mice via fecal microbiota transplantation, indicating a potential role of gut microbiota modulation in oxaliplatin efficacy. Further, metagenomics data showed that Akkermansia muciniphila (A. muciniphila) ranked first among the bacterial species with decreased relative abundances after antibiotic treatment. Metabolically active A. muciniphila promotes oxaliplatin efficacy. As shown by metabolomics analysis, the metabolic pattern of gut microbiota was disrupted with significantly downregulated levels of pentadecanoic acid (PEA), and the use of PEA significantly promoted oxaliplatin efficacy. Mechanistically, FUBP1 positively regulated aerobic glycolysis of GC cells to hinder the therapeutic efficacy of oxaliplatin. A. muciniphila-derived PEA functioned as an inhibitory factor of glycolysis by directly antagonizing the activity of FUBP1, which potentiated GC responses to oxaliplatin. Our research suggested a key role for intestinal A. muciniphila and its metabolite PEA in promoting oxaliplatin efficacy, thus providing a new perspective for probiotic and prebiotic intervention in GC patients during chemotherapy.


Asunto(s)
Akkermansia , Antineoplásicos , Microbioma Gastrointestinal , Glucólisis , Oxaliplatino , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Animales , Akkermansia/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glucólisis/efectos de los fármacos , Ratones , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Saudi Pharm J ; 32(1): 101919, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38178852

RESUMEN

This study aimed to prepare an o/w mitiglinide microemulsion (MTGME) to improve the drug solubility and bioavailability. The formulation of o/w MTGME was optimized by the solubility study of drug, pseudo-ternary phase diagram and Box-Behnken design successively. MTGME was characterized by dynamic laser light scattering (DLS), zeta potential and transmission electron microscopy (TEM), moreover, the storage stability, pharmacodynamics and pharmacokinetics were investigated. The optimal prescription for MTGME consisted of Maisine 35-1 (oil), Cremophor EL (surfactant) and propylene glycol (PG, cosurfactant). MTGME with a spherical dimension of 58.1 ± 5.86 nm was stable when stored at 4 °C for 3 months. The blood glucose levers (BGL) of diabetic mice were uniformly and significantly decreased by intragastric (i.g.) administration of 1-4 mg/kg MTGME, in which BGL (i.g. 4 mg/kg MTGME) was reduced by 69% during 24 h. The pharmacokinetics study of MTGME (i.g., 20 mg/kg) in Wistar rats showed higher plasma drug concentration (Cmax, 2.9 folds), larger area under curve (AUC, 4.6 folds) and oral bioavailability than those of MTG suspensions. Generally, the MTGME (o/w) showed good effect on controlling hyperglycemia. Therefore, microemulsion can be used as an effective oral drug delivery system to improve the bioavailability of MTG.

4.
J Transl Med ; 21(1): 915, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104081

RESUMEN

BACKGROUND: SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS: Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS: A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS: The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Humanos , Animales , Ratones , Enfermedades Cardiovasculares/genética , SARS-CoV-2 , Biología Computacional , Modelos Animales de Enfermedad , Inflamación/genética
5.
Opt Lett ; 48(20): 5355-5358, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831866

RESUMEN

Photon pairs generated by employing spontaneous nonlinear effects in microresonators are critically essential for integrated optical quantum information technologies, such as quantum computation and quantum cryptography. Microresonators featuring high-quality (Q) factors can offer simple yet power-efficient means to generate photon pairs, thanks to the intracavity field enhancement. In microresonators, it is known that the photon-pair generation rate (PGR) is roughly proportional to the cubic power of the Q factor. However, the upper limit on PGR is also set by the Q factor: a higher Q factor brings a longer photon lifetime, which in turn leads to a lower repetition rate allowing for photon flow emitted from the microresonator, constrained by the Fourier-transform limit. Exceeding this limit will result in the overlap of photon wave packets in the time domain, thus degrading the quantum character of single-photon light beams. To push the limit of PGR in a single resonator, we propose a method by harnessing the resonance linewidth-manipulated microresonators to improve the maximum achievable photon repetition rate while keeping the power efficiency. The maximum achievable PGR and power efficiency are thus balanced by leveraging the combination of low and high-Q resonances.

6.
Plant J ; 106(5): 1278-1297, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733535

RESUMEN

Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two- to three-fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two-hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1-overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14-overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14-CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea.


Asunto(s)
Cajanus/genética , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Apigenina/metabolismo , Cajanus/enzimología , Cajanus/fisiología , Proteínas de Unión al Calcio/genética , Sequías , Expresión Génica , Genisteína/metabolismo , Isoflavonas/metabolismo , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Estrés Fisiológico , Técnicas del Sistema de Dos Híbridos
7.
Plant Physiol ; 185(3): 951-968, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33743011

RESUMEN

Flavonoids are secondary metabolites that play important roles in fruit and vegetable development. Here, we examined the function of hyperoside, a unique flavonoid in okra (Abelmoschus esculentus), known to promote both flowering and seed set. We showed that the exogenous application of hyperoside significantly improved pollen germination rate and pollen tube growth by almost 50%, resulting in a 42.7% increase in the seed set rate. Of several genes induced by the hyperoside treatment, AeUF3GaT1, which encodes an enzyme that catalyzes the last step of hyperoside biosynthesis, was the most strongly induced. The transcription factor AeMYB30 enhanced AeUFG3aT1 transcription by directly binding to the AeUFG3aT1 promoter. We studied the effect of the hyperoside application on the expression of 10 representative genes at four stages of reproductive development, from pollination to seed maturity. We firstly developed an efficient transformation system that uses seeds as explants to study the roles of AeMYB30 and AeUFG3aT1. Overexpression of AeMYB30 or AeUF3GaT1 promoted seed development. Moreover, exogenous application of hyperoside partially restored the aberrant phenotype of AeUF3GaT1 RNA-interference plants. Thus, hyperoside promotes seed set in okra via a pathway involving AeUF3GaT and AeMYB30, and the exogenous application of this flavonoid is a simple method that can be used to improve seed quality and yield in okra.


Asunto(s)
Abelmoschus/metabolismo , Quercetina/análogos & derivados , Semillas/metabolismo , Regiones Promotoras Genéticas/genética , Quercetina/metabolismo
8.
Biochem Biophys Res Commun ; 560: 80-86, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33979737

RESUMEN

The relationship between circular RNAs (circRNAs) and many types of cancer has been of great interest. A novel circRNA, circBFAR, has been identified, but the functions of circBFAR and its underlying mechanism in gastric cancer (GC) have not been reported. This study was designed to investigate the role of circBFAR in GC and its downstream miRNA targets. Quantitative real-time polymerase reaction was used to detect the expression of circBFAR and miRNAs. Cell counting kit-8 and EdU were used to detect the proliferation of GC cells. Measurement of the extracellular acidification rate, oxygen consumption rate and lactate acid production were performed to assess the glycolysis levels. The results showed that circBFAR exhibited higher expression in GC tissues and cell lines. circBFAR was proven to promote GC proliferation by targeting the miR-513a-3p/hexokinase 2 (HK2) axis. Inhibition of circBFAR also led to a significant decrease in the glycolysis levels. In this study, we found a circBFAR/miR-513a-3p/HK2 axis in GC and revealed the relationship between circBFAR and glycolysis for the first time. circBFAR may serve as a novel target of GC individualized therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Hexoquinasa/genética , MicroARNs/metabolismo , ARN Circular/metabolismo , Neoplasias Gástricas/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Glucólisis/genética , Hexoquinasa/metabolismo , Humanos , Masculino , Ratones Desnudos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
9.
Cancer Cell Int ; 21(1): 704, 2021 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-34953498

RESUMEN

BACKGROUND: Fasting mimic diet is an effect approach for gastric cancer (GC) treatment. Exploring mechanisms of glucose deprivation-mediated GC suppression is required to develop novel therapeutic regimens. Farnesyltransferase 1 (FDFT1), as a novel target in basic research, has been reported to regulate malignant progression in some types of cancer. However, biological functions of FDFT1 in GC are still unclear. This study focused on biological functions of FDFT1 in GC and the association between glucose starvation (GS) and FDFT1. METHODS: The data derived from the Kaplan-Meier Plotter database were collected to identify the relationship between survival time and FDFT1 expression levels of GC patients. Bioinformatic analysis was performed to explore the biological functions of FDFT1. The expression levels of targeted genes and microRNAs (miRNAs) were detected with immunohistochemistry, quantitative real-time PCR and western blot. Malignant behaviors were measured using cell counting, cell counting kit-8, 5-ethynyl-2-deoxyuridine, wound healing, invasion transwell assays in vitro and constructions of subcutaneous and lung-metastatic tumors in vivo. The glycolysis of GC cells was determined by a series of metabolites, including lactate acid, pyruvic acid, ATP production, rates of glucose uptake, extracellular acidification rate and oxygen consumption rate. RESULTS: FDFT1 was downregulated in GC and negatively correlated with pathological T stage, pathological TNM stage and cancer differentiation. High expression of FDFT1 also indicated better prognosis of GC patients. FDFT1 upregulation attenuated proliferation, migration and invasion of GC. miR-216a-5p was identified as a critical suppressor of FDFT1 expression and miR-216a-5p/FDFT1 axis regulated malignant behaviors and glycolysis of GC cells. GS suppressed malignant behaviors of GC by targeting miR-216a-5p/FDFT1 axis both in vitro and in vivo. CONCLUSION: This study illustrated novel mechanisms by which GS effectively suppresses GC. FDFT1 may become a potential prognostic indicator and novel target of GC therapy.

10.
Cancer Cell Int ; 21(1): 481, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507580

RESUMEN

BACKGROUND: Phosphoglucomutase 1 (PGM1) acts as an important regulator in glucose metabolism. However, the role of PGM1 in gastric cancer (GC) remains unclear. This study aims to investigate the role of PGM1 and develop novel regimens based on metabolic reprogramming in GC. METHODS: Correlation and enrichment analyses of PGM1 were conducted based on The Cancer Genome Atlas database. Data derived from the Kaplan-Meier Plotter database were analyzed to evaluate correlations between PGM1 expression and survival time of GC patients. Cell counting kit-8, 5-Ethynyl-2-deoxyuridine, flow cytometry assays, generation of subcutaneous tumor and lung metastasis mouse models were used to determine growth and metastasis in vitro and in vivo. Cell glycolysis was detected by a battery of glycolytic indicators, including lactate, pyruvic acid, ATP production and glucose uptake. Fatty Acid Synthase (FASN) activity and expression levels of lipid enzymes were determined to reflect on lipid metabolism. RESULTS: Correlation and enrichment analyses suggested that PGM1 was closely associated with cell viability, proliferation and metabolism. PGM1 was overexpressed in GC tissues and cell lines. High PGM1 expression served as an indicator of shorter survival for specific subpopulation of GC patients. It was also correlated with pathological tumor stage and pathological tumor node metastasis stage of GC. Under the glucose deprivation condition, knockdown of PGM1 significantly suppressed cell viability, proliferation and glycolysis, whereas lipid metabolism was enhanced. Orlistat, as a drug that was designed to inhibit FASN activity, effectively induced apoptosis and suppressed lipid metabolism in GC. However, orlistat conversely increased glycolytic levels. Orlistat exhibited more significant inhibitive effects on GC progression after knockdown of PGM1 under glucose deprivation due to combination of glycolysis and lipid metabolism both in vitro and in vivo. CONCLUSIONS: Downregulation of PGM1 expression under glucose deprivation enhanced anti-cancer effects of orlistat. This combination application may serve as a novel strategy for GC treatment.

11.
Phys Rev Lett ; 127(4): 043904, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355939

RESUMEN

Scattering immune propagation of light in topological photonic systems may revolutionize the design of integrated photonic circuits for information processing and communications. In optics, various photonic topological circuits have been developed, which were based on classical emulation of either quantum spin Hall effect or quantum valley Hall effect. On the other hand, the combination of both the valley and spin degrees of freedom can lead to a new kind of topological transport phenomenon, dubbed spin-valley Hall effect (SVHE), which can further expand the number of topologically protected edge channels and would be useful for information multiplexing. However, it is challenging to realize SVHE in most known material platforms, due to the requirement of breaking both the (pseudo)fermionic time-reversal (T) and parity symmetries (P) individually, but leaving the combined symmetry S≡TP intact. Here, we propose an experimentally feasible platform to realize SVHE for light, based on coupled ring resonators mediated by optical Kerr nonlinearity. Thanks to the inherent flexibility of cross-mode modulation, the coupling between the probe light can be engineered in a controllable way such that spin-dependent staggered sublattice potential emerges in the effective Hamiltonian. With delicate yet experimentally feasible pump conditions, we show the existence of spin-valley Hall-induced topological edge states. We further demonstrate that both degrees of freedom, i.e., spin and valley, can be manipulated simultaneously in a reconfigurable manner to realize spin-valley photonics, doubling the degrees of freedom for enhancing the information capacity in optical communication systems.

12.
Drug Dev Ind Pharm ; 47(9): 1392-1400, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34668822

RESUMEN

In this study, meglumine (Meg) and arginine (Arg), acting as the hydrotrope, were used to form the stable curcumin (Cur)-hydrotrope complexes, respectively. Based on the single factor experiment optimization, the Cur-Meg/or Cur-Arg complex was prepared and then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and differential scanning calorimetry (DSC). The results showed that Cur-Meg/Arg complexes bound together by hydrogen bonds/or ionic bonds were successfully prepared and the amorphous state of Cur appeared in their complexes. Compared with the Cur-Meg complex, Cur-Arg had better stability in stress testing. Cur-Meg/Arg complexes had a faster drug release rate in vitro and the area-under-curve (AUC) of Cur-Meg/Arg solutions in rats were at least 6.3-fold larger than that of the Cur suspensions. These findings suggest that hydrotropy combined with solid dispersion technique is a simple and effective way to improve the bioavailability of Cur.HIGHLIGHTSThe optimal Cur-Meg/or Cur-Arg complex powder was prepared and characterized.The Cur release rate in vitro was significantly improved.The bioavailability can be improved when using Cur-Meg/or Cur-Arg complex.A simple and effective way to improve the bioavailability of Cur.


Asunto(s)
Curcumina , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Curcumina/química , Polvos , Ratas , Solubilidad , Difracción de Rayos X
13.
J Exp Bot ; 71(14): 4042-4056, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249299

RESUMEN

The flowers of okra (Abelmoschus esculentus) open and wilt within only a few hours, and this is accompanied by accumulation of hyperoside, a secondary metabolite in the flavonoid pathway. However, little is known about the relationship between flavonoids and flowering. Here, we found that exogenous application of hyperoside extended the duration of the full-blooming period by more than 3-fold, and this was accompanied by a 14.7-fold increase in the expression of CALCIUM-DEPENDENT PROTEIN KINASE6 (AeCDPK6). Gene expression profiling indicated that the transcription factor AeMYB30 was co-expressed with AeCDPK6, and detailed protein interaction and phosphorylation experiments together with yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated an interaction between AeMYB30 and AeCDPK6. AeCDPK6 specifically phosphorylated AeMYB30S191, leading to increased protein stability and prevention of degradation. Furthermore, AeMYB30 directly bound to the promoter of AeUF3GaT1, a key enzyme in the hyperoside biosynthesis pathway. Analysis of transgenic plants showed that AeCDPK6 was required for the hyperoside-induced phosphorylation of AeMYB30 to enhance its stability and transcriptional activity. Ectopic expression of AeCDPK6 promoted hyperoside accumulation and prolonged the full-blooming period in an AeMYB30-dependent manner. Our results indicate the role of AeCDPK6-AeMYB30 in the molecular mechanism by which hyperoside regulates the period of full blooming in okra, a plant with a short duration of flowering.


Asunto(s)
Abelmoschus , Flavonoides , Extractos Vegetales , Quercetina/análogos & derivados
14.
Plant Biotechnol J ; 17(9): 1804-1813, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30803117

RESUMEN

For non-model plants, functional characterization of genes is still hampered by lack of efficient stable transformation procedures. Here, we report a simple, fast and efficient transformation technique with Agrobacterium rhizogenes for generating stable transgenic roots in living plants to facilitate functional studies in vivo. We showed that injection of A. rhizogenes into stems of various plant species lead to stable transgenic root generation, which can sustain plant growth after the original, non-transgenic roots were cut off. A transformation system was established for pigeon pea, a major woody food crop, after optimizing the selection of A. rhizogenes strains, bacterium concentration, injection position and seedling age. RT-PCR and fluorescence observation indicated a transgenic root induction efficiency of about 39% in pigeon pea. Furthermore, induction of hairy roots was achieved in nine out of twelve tested economically important plants at an efficiency of 15-39%. As proof of concept, bimolecular fluorescence complementation (BiFC) assay was applied to test the interaction between CcCIPK14 and CcCBL1/2 in pigeon pea. Additionally, ectopic expression of the bZIP transcription factor MdHY5 from apple confirmed the utility of the transformation technique for engineering anthocyanin synthesis in roots. Taken together, we show that this method allows fast in vivo studies of gene function in a wide range of plant species.


Asunto(s)
Cajanus/genética , Raíces de Plantas/genética , Transformación Genética , Agrobacterium , Genes de Plantas , Plantas Modificadas Genéticamente
15.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611236

RESUMEN

Aliphatic polyester is an important polyester material with good biocompatibility and degradability, which can be synthesized through ring-opening alternating copolymerization (ROAC) of epoxides and anhydrides. Herein, density functional theory (DFT) is used to explore the mechanism of ROAC of epoxides (propylene oxide (PO), styrene oxide (SO), epichlorohydrin (ECH), and cyclohexane oxide (CHO)) and phthalic anhydride (PA) catalyzed by bis(triphenylphosphine) ammonium chloride (PPNCl) and ureas. It was found that the ring-opening polymerization (ROP) of epoxides is the rate-controlling step, and the benzyl alcohol (BnOH) as the initiator has little effect on the polymerization activity, which was consistent with previous experimental results. Calculated comparisons of the ROAC activity of CHO/PA catalyzed by four different ureas indicate that as the Lewis acidity of the urea increased, the energy barriers of the copolymerization increased and the activity decreased. The main reason was that the strong hydrogen-bonding interactions stabilized the key intermediate of the rate-controlling step and inhibited subsequent monomer insertion. Based on this, a series of new ureas with higher catalytic activity were designed by introducing electron-donating substituents. In SO polymerization, increasing the Lewis acidity of urea can improve the SO regioselectivity. In addition, the monomer ECH with CH2Cl shows higher activity of ROAC than PO and SO, which could be ascribed to the fact that the strong electron-withdrawing Cl atom stabilizes the transition state in the rate-controlling step and reduces the reaction energy barrier.

16.
Adv Mater ; 36(8): e2309332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934114

RESUMEN

Bacterial-based delivery strategies have recently emerged as a unique research direction in the field of drug delivery. However, bacterial vectors are quickly phagocytosed by immune cells after entering the bloodstream. Taking advantage of this phenomenon, herein, this work seeks to harness the potential of immune cells to delivery micron-sized bacterial vectors, and find that inactivated bacterial can accumulate at tumor-site after intravenous injection through CD11b+ cells hitchhiking. To this end, this work then designs a gold-platinum bimetallic nanozyme coated bacterial vector (Au-Pt@VNP20009, APV). Utilizing strong tumor inflammatory response induced by low dose X-rays, this work further heightens the ability of CD11b+ immune cells to assist APV hitchhiking for tumor-targeted delivery, which can significantly relieve tumor hypoxia and immunosuppression, and inhibit tumor growth and metastasis. This work elucidates the potential mechanisms of bacterial vector targeted delivery, opening up new horizons for bacterial vector delivery strategies and clinical tumor radioimmunotherapy.


Asunto(s)
Neoplasias , Radioinmunoterapia , Humanos , Bacterias , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Inmunoterapia
17.
Signal Transduct Target Ther ; 9(1): 155, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851750

RESUMEN

Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.


Asunto(s)
Dolor , Humanos , Dolor/genética , Dolor/patología , Manejo del Dolor , Animales
18.
Int J Surg ; 110(2): 1000-1007, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085808

RESUMEN

BACKGROUND: This study aimed to analyze and compare the short-term and long-term outcomes of proximal gastrectomy (PG) and total gastrectomy (TG) in patients with locally advanced proximal gastric cancer (GC) following neoadjuvant chemotherapy (NACT). METHOD: A multicenter retrospective cohort study and propensity score matching (PSM) were employed. The authors examined 367 patients with proximal GC who received NACT followed by PG ( n =164) or TG ( n =203) at two Chinese medical institutions between December 2009 and December 2022. Clinical and pathological parameters, postoperative complications, and 5-year overall survival (OS) and recurrence-free survival (RFS) were compared between the two groups. The dissection status and metastasis rate of each lymph node station were assessed. RESULTS: After PSM, 80 patients were enrolled in both TG and PG group, and baseline characteristics were comparable between the groups (all P >0.05). The TG group had a higher total number of lymph nodes retrieved ( P <0.001) and longer operative time ( P =0.007) compared to the PG group. The incidence of Clavien-Dindo grade II or higher postoperative complications was similar between the TG group (21.3%, 17/80) and the PG group (17.5%, 14/80) ( P =0.689). The 5-year OS rates were 68.4 for the PG group and 66.0% for the TG group ( P =0.881), while the 5-year RFS rates were 64.8 and 61.9%, respectively ( P =0.571), with no statistically significant differences. Metastasis rates at lymph node stations #4d, #5, #6, and #12a were notably low in the TG group, with values of 2.74, 0.67, 1.33, and 1.74%, respectively. CONCLUSION: For proximal GC patients following NACT, PG maintains comparable curative potential and oncological efficacy to TG, making it a safe option.


Asunto(s)
Neoplasias Gástricas , Humanos , Estudios de Cohortes , Gastrectomía/efectos adversos , Terapia Neoadyuvante/efectos adversos , Complicaciones Posoperatorias/etiología , Puntaje de Propensión , Estudios Retrospectivos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/cirugía , Resultado del Tratamiento
19.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37765024

RESUMEN

The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.

20.
Int J Biol Sci ; 19(1): 104-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36594084

RESUMEN

Everolimus was designed as a mammalian target of rapamycin (mTOR) inhibitor. It has been proven as a targeted drug for gastric cancer (GC) therapy. However, long-term treatment with everolimus may cause severe side effects for recipients. Decreasing the dosage and attenuating the associated risks are feasible to promote clinical translation of everolimus. This study aimed to identify the underlying mechanisms of responses to everolimus and develop novel regimens for GC treatment. Our findings proved that there was a significant dose-dependent relationship of everolimus-induced GC cell apoptosis and glycolysis inhibition. Then, we found that a member of glucose transporter (GLUT12) family, GLUT12, was actively upregulated to counteract the anticancer effects of everolimus. GLUT12 might be overexpressed in GC. High expression of GLUT12 might be correlated with tumor progression and short survival time of GC patients. Bioinformatic analysis suggested that GLUT12 might be involved in regulating cancer development and metabolism. The experiments proved that GLUT12 significantly promoted GC growth, glycolysis and impaired the anticancer effects of everolimus. Androgen receptor (AR) is a classical oncogenic factor in many types of cancer. Everolimus elevated GLUT12 expression in an AR-dependent manner. Inhibition of AR activity abrogated the promotive effects on GLUT12 expression. Both in-vitro and in-vivo experiments demonstrated that GLUT12 knockdown augmented anticancer effects of everolimus. Enzalutamide, an AR inhibitor, or AR knockdown was comparable to GLUT12 suppression. This study identified the role of the AR/GLUT12 pathway in the development of poor responses to everolimus. Interference with AR/GLUT12 pathway may serve as a promising approach to promoting the translational application of everolimus in GC therapy.


Asunto(s)
Everolimus , Proteínas Facilitadoras del Transporte de la Glucosa , Receptores Androgénicos , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Everolimus/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transducción de Señal , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA