Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genomics ; 116(3): 110843, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608736

RESUMEN

Fenneropenaeus chinensis is a commercially important shrimp species cultured in China. This study investigated eight F. chinensis populations in China, including four geographical populations, three commercial breeds, and one wild population captured from the Yellow Sea. Population stratification analysis revealed that the Hebei geographical population and commercial breeding "Huanghai No. 4" were relatively independent and stable, reflecting a relatively closed breeding environment, whereas gene introgression was present between other populations. Selective signature analysis detected artificial selection for vision, growth, and disease resistance in the Hebei population. Neuronal development-related genes were detected to be under selection in the Changyi and Rizhao populations. Fertility of the Rizhao population was also investigated. Additionally, genes in the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway were involved in the high pH tolerance of the "Huanghai No. 4" population. This study provided support for the genetic mechanism of parsing economic traits and the development of molecular breeding technologies.


Asunto(s)
Penaeidae , Animales , Penaeidae/genética , China , Cruzamiento , Variación Genética , Selección Genética
2.
Planta ; 260(1): 1, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753175

RESUMEN

MAIN CONCLUSION: Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.


Asunto(s)
Broussonetia , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Selenio , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selenio/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Fisiológico/genética
3.
Psychol Med ; 54(4): 763-774, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084586

RESUMEN

BACKGROUND: Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent. METHODS: Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis. RESULTS: A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients. CONCLUSIONS: Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.


Asunto(s)
Trastorno Bipolar , Humanos , Manía , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo
4.
Appl Microbiol Biotechnol ; 108(1): 225, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376561

RESUMEN

The gut microbial communities interact with the host immunity and physiological functions. In this study, we investigated the bacterial composition in Litopenaeus vannamei shrimp's gut and rearing water under different host (developmental stage: juvenile and adult; health status: healthy and diseased) and environmental factors (temperature 25 °C and 28 °C; and light intensity: low and high). The PCoA analysis showed that all water samples were clustered together in a quarter, whereas the gut samples spread among three quarters. In terms of functional bacteria, gut samples of adult shrimp, healthy adult shrimp, adult shrimp raised at 28 °C, and juvenile shrimp under high light intensity exhibited a higher abundance of Vibrionaceae compared to each other opposite group. Gut samples of juvenile shrimp, infected adult shrimp, juvenile shrimp with low light intensity, and adult shrimp with a water temperature of 25 °C showed a higher abundance of Pseudoaltromonadaceae bacteria compared to each other opposite group. Gut samples of juvenile shrimp, healthy adult shrimp, adult shrimp raised at a water temperature of 28 °C, and juvenile shrimp with high light intensity showed the higher abundance of Firmicutes/Bacteroidota ratio compared to each other opposite group. Our results showed that L. vannamei juveniles are more sensitive to bacterial infections; besides, water temperature of 28 °C and high light intensity groups were both important conditions improving the shrimp gut bacterial composition under industrial indoor farming systems. KEY POINTS: • Bacteria diversity was higher among shrimp intestinal microbiota compared to the rearing water. • Shrimp juveniles are more sensitive to bacterial infection compared to adults. • Water temperature of 28 °C and high light intensity are recommended conditions for white shrimp aquaculture.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Penaeidae , Animales , Agricultura , Granjas , Agua
5.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256163

RESUMEN

Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.


Asunto(s)
Palaemonidae , Vitelogeninas , Animales , Femenino , Vitelogeninas/genética , Palaemonidae/genética , Filogenia , Desarrollo Embrionario , Evolución Molecular
6.
Sheng Li Xue Bao ; 76(1): 89-96, 2024 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-38444134

RESUMEN

Trace amine-associated receptor 1 (TAAR1) is a classical type of G-protein-coupled receptor, which is widely distributed in the brain of mammals, especially in the limbic system and the region rich in monoaminergic neurons, and it is a highly conserved TAAR subtype in all species. TAAR1 can specifically respond to endogenous trace amines in the central nervous system and peripheral tissues, and plays an important role in the pathophysiological mechanisms involving the dysregulation of monoamine system and glutamate system leading to mental disorders. In addition, TAAR1 modulator can act on inwardly rectifying potassium channels and regulate synaptic transmission and neuronal activity. According to the latest research findings, TAAR1 exerts a series of functions by regulating signal pathways and substrate phosphorylation, which is related to emotion, cognition, fear and addiction. Therefore, we conducted a detailed review of relevant studies on the TAAR1 signaling pathways, aiming at revealing the great potential of TAAR1 as a new target for drug treatment of neuropsychiatric disorders.


Asunto(s)
Receptores Acoplados a Proteínas G , Transmisión Sináptica , Animales , Humanos , Encéfalo , Aminas , Mamíferos
7.
Opt Express ; 31(2): 2654-2664, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785274

RESUMEN

Optical bound states in continuum (BICs) are the special lossless electromagnetic resonance modes found in optical transmission media. Optical BICs supported by metasurfaces can bring a series of image-based applications, which can be classified into far-field image-based applications and near-field image-based applications according to imaging distance. The far field image-based applications of optical BICs supported by metasurfaces have been proved theoretically and experimentally. However, the near-field image-based applications are still in the stage of theoretical demonstration, and its practical feasibility is still questioned. In this letter, we have experimentally demonstrated the feasibility of near-field image-based applications of optical BICs. An all-silicon terahertz metasurface that supports near-field displaying based on quasi-BIC is designed. Its unit cell is based on the classic asymmetric elliptical strip structure, and one unit cell of the metasurface corresponds to one display pixel. By observing the electric field distribution of the metasurface in the near-field region, the display of the given image is successfully constructed. The near-field image-based application of BICs may be beneficial for the information encryption, the hidden item detection, matter analysis, etc.

8.
Opt Express ; 31(23): 38744-38760, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017971

RESUMEN

Low-dimensional CsPbBr3 perovskite materials have gained widespread attention, derived from their remarkable properties and potential for numerous optoelectronic applications. Herein, the sample of CsPbBr3 microwires were prepared horizontally onto n-type InGaN film substrate using an in-plane solution growth method. The resulting CsPbBr3 microwire/InGaN heterojunction allows for the achievement of a highly sensitive and broadband photodetector. Particularly for the implementation in a self-supplying manner, the best-performing photodetector can achieve a superior On/Off ratio of 4.6×105, the largest responsivity ∼ 800.0 mA/W, a maximum detectivity surpassing 4.6× 1012 Jones, and a high external quantum efficiency approaching 86.5% upon 405 nm light illumination. A rapid response time (∼ 4.48 ms/7.68 ms) was also achieved. The as-designed CsPbBr3 microwire/InGaN heterojunction device without any encapsulation exhibits superior comprehensive stability. Besides, the device featuring as a single pixel imaging unit can readily detect simple images under broadband light illumination with a high spatial resolution, acknowledging its outstanding imaging capability. The robust photodetection properties could be derived from the intense absorption of CsPbBr3 MWs and high-efficiency charge carriers transporting toward the in-situ formed CsPbBr3/InGaN heterointerface. The results may offer an available strategy for the in-situ construction of best-performing low-dimensional perovskite heterojunction optoelectronic devices.

9.
Opt Lett ; 48(10): 2559-2562, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186708

RESUMEN

Quasi-bound states in the continuum (q-BICs) in optical metasurfaces have been found to carry special radiation polarization properties. Herein, we have studied the relationship between the radiation polarization state of a q-BIC and the polarization state of the output wave, and theoretically proposed a perfect linear polarization wave generator controlled by the q-BIC. The proposed q-BIC has an x-polarized radiation state, and the y co-polarized output wave is completely eliminated by introducing additional resonance at the q-BIC frequency. Finally, a perfect x-polarized transmission wave with very low background scattering is obtained, and the transmission polarization state is not limited by the incident polarization state. The device can be used to efficiently obtain narrowband linearly polarized waves from non-polarized waves, and can also be used for polarization-sensitive high-performance spatial filtering.

10.
Fish Shellfish Immunol ; 132: 108458, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455777

RESUMEN

The Penaeus vannamei is an important shrimp species with enormous commercial and ecological values. In production process, the air exposure resistance is vital for live transportation without water. We tested the air exposure resistant ability of P. vannamei, and carried out gill histological observation and gene expression analysis. The physiology and molecular response to the air exposure stress of P. vannamei was revealed. We found that body weight could affect the air exposure tolerance. Air exposure caused epithelial cell of gill filament shrinking and tissue fluid exudation within half of hour, and triggered oxidative stress response. After retrieved to water, epithelial cell shrinking and tissue fluid exudation recovered gradually, but oxidative and antioxidant response is still going on. Organisms reduced oxidative stress by regulating levels of antioxidants and antioxidant enzymes that remove reactive oxygen species (ROS) and RNA and DNA processing to repair tissue damage, and expression of apoptosis associated-genes altered. Furthermore, the survive shrimps could live steadily more than 5 days, and their gill filament recovered to normal state, proving that the damage of air exposure is reversible. These findings could be considered in the waterless live transportation of P. vannamei.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Penaeidae/fisiología , Branquias/metabolismo , Estrés Oxidativo , Oxidación-Reducción
11.
Int J Eat Disord ; 56(7): 1353-1364, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36951235

RESUMEN

OBJECTIVE: Bulimia nervosa (BN) is an eating disorder associated with the dysfunction of intrinsic brain networks. However, whether the network disruptions in BN patients manifest as dysconnectivity or imbalances of network modular segregation remains unclear. METHOD: We collected data from 41 women with BN and 41 matched healthy control (HC) women. We performed graph theory analysis based on resting-state functional magnetic resonance imaging (RS-fMRI) data; then, we computed the participation coefficient (PC) among brain modules to characterize the modular segregation for the BN and HC groups. The number of intra- and inter-modular connections was calculated to explain the PC changes. Additionally, we examined the potential associations of the measures mentioned above with clinical variables within the BN group. RESULTS: Compared with the HC group, the BN group showed significantly decreased PC in the fronto-parietal network (FPN), cingulo-opercular network (CON), and cerebellum (Cere). Additionally, the number of intra-modular connections of the default mode network (DMN) and the number of the inter-modular connections between the DMN and CON, FPN and Cere, and CON and Cere in the BN group were lower than those in the HC group. The nodal level analysis showed that the BN group had a decreased PC of the anterior prefrontal cortex (aPFC), dorsal frontal cortex (dFC), inferior parietal lobule (IPL), thalamus, and angular gyrus. Further, these metrics were significantly correlated with clinical variables in the BN group. DISCUSSION: These findings may provide novel insights to capture atypical topologies associated with pathophysiology mechanisms and clinical symptoms underlying BN.


Asunto(s)
Bulimia Nerviosa , Trastornos de Alimentación y de la Ingestión de Alimentos , Humanos , Femenino , Bulimia Nerviosa/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Corteza Prefrontal , Mapeo Encefálico
12.
BMC Psychiatry ; 23(1): 584, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568112

RESUMEN

BACKGROUND: The neural correlate of cognitive deficits in bipolar disorder (BD) is an issue that warrants further investigation. However, relatively few studies have examined the intrinsic functional connectivity (FC) underlying cognitive deficits involving sustained attention and executive function at both the region and network levels, as well as the different relationships between connectivity patterns and cognitive performance, in BD patients and healthy controls (HCs). METHODS: Patients with BD (n = 59) and HCs (n = 52) underwent structural and resting-state functional magnetic resonance imaging and completed the Wisconsin Card Sorting Test (WCST), the continuous performance test and a clinical assessment. A seed-based approach was used to evaluate the intrinsic FC alterations in three core neurocognitive networks (the default mode network [DMN], the central executive network [CEN] and the salience network [SN]). Finally, we examined the relationship between FC and cognitive performance by using linear regression analyses. RESULTS: Decreased FC was observed within the DMN, in the DMN-SN and DMN-CEN and increased FC was observed in the SN-CEN in BD. The alteration direction of regional FC was consistent with that of FC at the brain network level. Decreased FC between the left posterior cingulate cortex and right anterior cingulate cortex was associated with longer WCST completion time in BD patients (but not in HCs). CONCLUSIONS: These findings emphasize the dominant role of the DMN in the psychopathology of BD and provide evidence that cognitive deficits in BD may be associated with aberrant FC between the anterior and posterior DMN.


Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico por imagen , Función Ejecutiva , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cognición
13.
J Nanobiotechnology ; 21(1): 487, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105187

RESUMEN

Stem cell (SC) therapy has been shown high prospects in erectile dysfunction (ED) treatment. Without ethical issues and risks of immune rejection and tumorigenesis of exogenous SC therapy, endogenous stem/progenitor cells (S/PCs) have a better potential for ED management, and their homing and redistribution are controlled by SDF1-α/CXCR4 axis. Considering black phosphorus nanosheet (BPNS) has emerged as an efficient and safe drug vehicle due to its large surface area, biodegradability, and the ability to retain and slowly release its loaded drugs, BPNS is utilized to load SDF1-α, a chemokine for S/PCs, to construct the BP@SDF1-α complex to efficiently recruit stem cells (SCs) by injury-site injection and thus ameliorate ED within the bilateral cavernous nerve injury (BCNI) rat models. We find that BP@SDF1-α can efficiently recruit exogenous SCs and endogenous S/PCs to corpus cavernosum and main pelvic ganglion (MPG) by local administration. Of note, ascribing to endogenous S/PCs recruitment, it also successfully alleviates ED in BCNI rat models by enhancing the protein expression levels of α-SMA, CD31, and nNOs, and eliciting less collagen deposition in the penis after its combined injection at corpus cavernosum and MPG. Thus, this study provides a new insight into the treatment of ED with endogenous S/PCs. BIODEGRADABLE NANO BLACK PHOSPHORUS BASED SDF1-α DELIVERY SYSTEM AMELIORATES ERECTILE DYSFUNCTION IN A CAVERNOUS NERVE INJURY RAT MODEL BY RECRUITING ENDOGENOUS STEM/PROGENITOR CELLS.


Asunto(s)
Disfunción Eréctil , Masculino , Humanos , Animales , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/metabolismo , Trasplante de Células Madre , Pene/lesiones , Pene/inervación , Colágeno , Modelos Animales de Enfermedad
14.
Ecotoxicol Environ Saf ; 256: 114902, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062262

RESUMEN

High alkalinity stress was considered as a major risk factor for aquatic animals surviving in saline-alkaline water. However, few information exists on the effects of alkalinity stress in crustacean species. As the dominant role of gills in osmotic and ionic regulation, the present study firstly evaluated the effect of alkalinity stress in Exopalaemon carinicauda to determine changes in gill microstructure, and then explore the heterogeneity response of gill cells in alkalinity adaptation by single-cell RNA sequencing (scRNA-seq). Hemolymph osmolality and pH were increased remarkably, and gills showed pillar cells with more symmetrical arrangement and longer lateral flanges and nephrocytes with larger vacuoles in high alkalinity. ScRNA-seq results showed that alkalinity stress reduced the proportion of pillar cells and increased the proportion of nephrocytes significantly. The differentially expressed genes (DEGs) related to ion transport, especially acid-base regulation, such as V(H+)-ATPases and carbonic anhydrases, were down-regulated in pillar cells and up-regulated in nephrocytes. Furthermore, pseudotime analysis showed that some nephrocytes transformed to perform ion transport function in alkalinity adaption. Notedly, the positive signals of carbonic anhydrase were obviously observed in the nephrocytes after alkalinity stress. These results indicated that the alkalinity stress inhibited the ion transport function of pillar cells, but induced the active role of nephrocytes in alkalinity adaptation. Collectively, our results provided the new insight into the cellular and molecular mechanism behind the adverse effects of saline-alkaline water and the saline-alkaline adaption mechanism in crustaceans.


Asunto(s)
Branquias , Palaemonidae , Animales , Concentración Osmolar , Palaemonidae/genética , Aclimatación , Agua/farmacología
15.
Ecotoxicol Environ Saf ; 268: 115723, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992642

RESUMEN

High carbonate alkalinity is one of the major stress factors for survival of aquatic animals in saline-alkaline water. Exopalaemon carinicauda is a good model for studying the saline-alkaline adaption mechanism in crustacean because of its great adaptive capacity to alkalinity stress. In this study, non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analyses based on high-throughput RNA sequencing (RNA-Seq) were used to study the metabolomic responses of hepatopancreas in E. carinicauda at 12 h and 36 h after acute carbonate alkalinity stress. The results revealed that most of the significantly differential metabolites were related to the lipid metabolism. In particular, the sphingolipid metabolism was observed at 12 h, the glycerophospholipid metabolism was detected at 36 h, and the linoleic acid metabolic pathway was significantly enriched at both 12 h and 36 h. The combined transcriptome and metabolome analysis showed that energy consumption increased at 12 h, resulting in significant enrichment of AMPK signaling pathways, which contributed to maintain energy homeostasis. Subsequently, the hepatopancreas provided sufficient energy supply through cAMP signaling pathway and glycerophosphate metabolism to maintain normal metabolic function at 36 h. These findings might help to understand the molecular mechanisms of the E. carinicauda under carbonate alkalinity stress, thereby promote the research and development of saline-alkaline resistant shrimp.


Asunto(s)
Palaemonidae , Transcriptoma , Animales , Hepatopáncreas , Palaemonidae/genética , Palaemonidae/metabolismo , Carbonatos/metabolismo
16.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36991918

RESUMEN

Deep-learning-based registration methods can not only save time but also automatically extract deep features from images. In order to obtain better registration performance, many scholars use cascade networks to realize a coarse-to-fine registration progress. However, such cascade networks will increase network parameters by an n-times multiplication factor and entail long training and testing stages. In this paper, we only use a cascade network in the training stage. Unlike others, the role of the second network is to improve the registration performance of the first network and function as an augmented regularization term in the whole process. In the training stage, the mean squared error loss function between the dense deformation field (DDF) with which the second network has been trained and the zero field is added to constrain the learned DDF such that it tends to 0 at each position and to compel the first network to conceive of a better deformation field and improve the network's registration performance. In the testing stage, only the first network is used to estimate a better DDF; the second network is not used again. The advantages of this kind of design are reflected in two aspects: (1) it retains the good registration performance of the cascade network; (2) it retains the time efficiency of the single network in the testing stage. The experimental results show that the proposed method effectively improves the network's registration performance compared to other state-of-the-art methods.

17.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203450

RESUMEN

Methyl farnesoate (MF), a crucial sesquiterpenoid hormone, plays a pivotal role in the reproduction of female crustaceans, particularly in the vitellogenesis process. Despite extensive research on its functions, the molecular mechanisms that regulate MF levels during the vitellogenic phase remain largely elusive. This study investigates the roles of microRNAs (miRNAs), significant post-transcriptional regulators of gene expression, in controlling MF levels in the swimming crab Portunus trituberculatus. Through bioinformatic analysis, four miRNAs were identified as potential regulators targeting two genes encoding Carboxylesterases (CXEs), which are key enzymes in MF degradation. Dual luciferase reporter assays revealed that let-7b and miR-141 suppress CXE1 and CXE2 expression by directly binding to their 3' UTRs. In vivo overexpression of let-7b and miR-141 significantly diminished CXE1 and CXE2 levels, consequently elevating hemolymph MF and enhancing vitellogenin expression. Spatiotemporal expression profile analysis showed that these two miRNAs and their targets exhibited generally opposite patterns during ovarian development. These findings demonstrate that let-7b and miR-141 collaboratively modulate MF levels by targeting CXEs, thus influencing vitellogenesis in P. trituberculatus. Additionally, we found that the expression of let-7b and miR-141 were suppressed by MF, constituting a regulatory loop for the regulation of MF levels. The findings contribute novel insights into miRNA-mediated ovarian development regulation in crustaceans and offer valuable information for developing innovative reproduction manipulation techniques for P. trituberculatus.


Asunto(s)
Braquiuros , Ácidos Grasos Insaturados , MicroARNs , Vitelogénesis , Animales , Femenino , Regiones no Traducidas 3' , Braquiuros/genética , Hidrolasas de Éster Carboxílico , MicroARNs/genética , Vitelogénesis/genética
18.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894957

RESUMEN

Dopamine receptors (DARs) are important transmembrane receptors responsible for receiving extracellular signals in the DAR-mediated signaling pathway, and are involved in a variety of physiological functions. Herein, the D1 DAR gene from Marsupenaeus japonicus (MjDAD1) was identified and characterized. The protein encoded by MjDAD1 has the typical structure and functional domains of the G-protein coupled receptor family. MjDAD1 expression was significantly upregulated in the gills and hepatopancreas after low temperature stress. Moreover, double-stranded RNA-mediated silencing of MjDAD1 significantly changed the levels of protein kinases (PKA and PKC), second messengers (cyclic AMP (cAMP), cyclic cGMP, calmodulin, and diacyl glycerol), and G-protein effectors (adenylate cyclase and phospholipase C). Furthermore, MjDAD1 silencing increased the apoptosis rate of gill and hepatopancreas cells. Thus, following binding to their specific receptors, G-protein effectors are activated by MjDAD1, leading to DAD1-cAMP/PKA pathway-mediated regulation of caspase-dependent mitochondrial apoptosis. We suggest that MjDAD1 is indispensable for the environmental adaptation of M. japonicus.


Asunto(s)
Receptores Dopaminérgicos , Sistemas de Mensajero Secundario , Animales , Receptores Dopaminérgicos/metabolismo , Temperatura , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo
19.
Sheng Li Xue Bao ; 75(2): 248-254, 2023 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-37089099

RESUMEN

Trace amines are endogenous molecules distributed in the central nervous system and peripheral tissues that resemble common biogenic amines in terms of subcellular localization, chemical structure, and metabolism. Trace amine-associated receptor (TAAR) is a kind of evolutionarily conserved G-protein-coupled receptors in vertebrates, in which TAAR1 is a functional regulator of monoamine transmitters such as dopamine and serotonin. TAAR1 is widely considered as a potential therapeutic target for schizophrenia, depression and drug addiction. Moreover, TAAR1 is also expressed in peripheral tissues. The homeostasis imbalance of trace aminergic system can induce over-activation of peripheral immune system and central immune inflammatory response. TAAR1 modulators are becoming potential emerging drugs for the treatment of immune-related illnesses, because they may play a major role in the activation or modulation of immune response.


Asunto(s)
Receptores Acoplados a Proteínas G , Trastornos Relacionados con Sustancias , Animales , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Aminas Biogénicas , Dopamina
20.
Opt Express ; 30(14): 24773-24787, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237023

RESUMEN

Interface engineering in the fabrication of low-dimensional optoelectronic devices has been highlighted in recent decades to enhance device characteristics such as reducing leakage current, optimizing charge transport, and modulating the energy-band structure. In this paper, we report a dielectric interface approach to realize one-dimensional (1D) wire near-infrared light-emitting devices with high brightness and enhanced emission efficiency. The light-emitting diode is composed of a zinc oxide microwire covered by a silver nanolayer (Ag@ZnO MW), magnesium oxide (MgO) buffer layer, and p-type gallium arsenide (GaAs) substrate. In the device structure, the insertion of a MgO dielectric layer in the n-ZnO MW/p-GaAs heterojunction can be used to modulate the device features, such as changing the charge transport properties, reducing the leakage current and engineering the band alignment. Furthermore, the cladding of the Ag nanolayer on the ZnO MW can optimize the junction interface quality, thus reducing the turn-on voltage and increasing the current injection and electroluminescence (EL) efficiency. The combination of MgO buffer layer and Ag nanolayer cladding can be utilized to achieve modulating the carrier recombination path, interfacial engineering of heterojunction with optimized band alignment and electronic structure in these carefully designed emission devices. Besides, the enhanced near-infrared EL and improved physical contact were also obtained. The study of current transport modulation and energy-band engineering proposes an original and efficient route for improving the device performances of 1D wire-type heterojunction light sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA