Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294957

RESUMEN

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

2.
Molecules ; 29(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675600

RESUMEN

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Asunto(s)
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacología , Fenazinas/síntesis química , Alanina/química , Alanina/farmacología , Phytophthora/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Floema/metabolismo , Floema/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Fungicidas Industriales/farmacología , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Diseño de Fármacos , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química
3.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257199

RESUMEN

To effectively control the infection of plant pathogens, we designed and synthesized a series of phenylthiazole derivatives containing a 1,3,4-thiadiazole thione moiety and screened for their antibacterial potencies against Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, as well as their antifungal potencies against Sclerotinia sclerotiorum, Rhizoctonia solani, Magnaporthe oryzae and Colletotrichum gloeosporioides. The chemical structures of the target compounds were characterized by 1H NMR, 13C NMR and HRMS. The bioassay results revealed that all the tested compounds exhibited moderate-to-excellent antibacterial and antifungal activities against six plant pathogens. Especially, compound 5k possessed the most remarkable antibacterial activity against R. solanacearum (EC50 = 2.23 µg/mL), which was significantly superior to that of compound E1 (EC50 = 69.87 µg/mL) and the commercial agent Thiodiazole copper (EC50 = 52.01 µg/mL). Meanwhile, compound 5b displayed the most excellent antifungal activity against S. sclerotiorum (EC50 = 0.51 µg/mL), which was equivalent to that of the commercial fungicide Carbendazim (EC50 = 0.57 µg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing an electron-withdrawing group at the meta-position and ortho-position of the benzene ring could endow the final structure with remarkable antibacterial and antifungal activity, respectively. The current results indicated that these compounds were capable of serving as promising lead compounds.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Tiadiazoles , Antifúngicos/farmacología , Tionas , Fungicidas Industriales/farmacología , Antibacterianos/farmacología
4.
Entropy (Basel) ; 26(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539717

RESUMEN

Human-object interaction (HOI) detection aims to localize and recognize the relationship between humans and objects, which helps computers understand high-level semantics. In HOI detection, two-stage and one-stage methods have distinct advantages and disadvantages. The two-stage methods can obtain high-quality human-object pair features based on object detection but lack contextual information. The one-stage transformer-based methods can model good global features but cannot benefit from object detection. The ideal model should have the advantages of both methods. Therefore, we propose the Pairwise Convolutional neural network (CNN)-Transformer (PCT), a simple and effective two-stage method. The model both fully utilizes the object detector and has rich contextual information. Specifically, we obtain pairwise CNN features from the CNN backbone. These features are fused with pairwise transformer features to enhance the pairwise representations. The enhanced representations are superior to using CNN and transformer features individually. In addition, the global features of the transformer provide valuable contextual cues. We fairly compare the performance of pairwise CNN and pairwise transformer features in HOI detection. The experimental results show that the previously neglected CNN features still have a significant edge. Compared to state-of-the-art methods, our model achieves competitive results on the HICO-DET and V-COCO datasets.

5.
Small ; 19(29): e2301915, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37189236

RESUMEN

Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.

6.
Eur Radiol ; 33(11): 7532-7541, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37289245

RESUMEN

OBJECTIVES: To determine whether 3D-CT multi-level anatomical features can provide a more accurate prediction of surgical decision-making for partial or radical nephrectomy in renal cell carcinoma. METHODS: This is a retrospective study based on multi-center cohorts. A total of 473 participants with pathologically proved renal cell carcinoma were split into the internal training and the external testing set. The training set contains 412 cases from five open-source cohorts and two local hospitals. The external testing set includes 61 participants from another local hospital. The proposed automatic analytic framework contains the following modules: a 3D kidney and tumor segmentation model constructed by 3D-UNet, a multi-level feature extractor based on the region of interest, and a partial or radical nephrectomy prediction classifier by XGBoost. The fivefold cross-validation strategy was used to get a robust model. A quantitative model interpretation method called the Shapley Additive Explanations was conducted to explore the contribution of each feature. RESULTS: In the prediction of partial versus radical nephrectomy, the combination of multi-level features achieved better performance than any single-level feature. For the internal validation, the AUROC was 0.93 ± 0.1, 0.94 ± 0.1, 0.93 ± 0.1, 0.93 ± 0.1, and 0.93 ± 0.1, respectively, as determined by the fivefold cross-validation. The AUROC from the optimal model was 0.82 ± 0.1 in the external testing set. The tumor shape Maximum 3D Diameter plays the most vital role in the model decision. CONCLUSIONS: The automated surgical decision framework for partial or radical nephrectomy based on 3D-CT multi-level anatomical features exhibits robust performance in renal cell carcinoma. The framework points the way towards guiding surgery through medical images and machine learning. CLINICAL RELEVANCE STATEMENT: We proposed an automated analytic framework that can assist surgeons in partial or radical nephrectomy decision-making. The framework points the way towards guiding surgery through medical images and machine learning. KEY POINTS: • The 3D-CT multi-level anatomical features provide a more accurate prediction of surgical decision-making for partial or radical nephrectomy in renal cell carcinoma. • The data from multicenter study and a strict fivefold cross-validation strategy, both internal validation set and external testing set, can be easily transferred to different tasks of new datasets. • The quantitative decomposition of the prediction model was conducted to explore the contribution of each extracted feature.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/patología , Estudios Retrospectivos , Nefrectomía/métodos , Tomografía Computarizada por Rayos X/métodos
7.
Inorg Chem ; 62(47): 19279-19287, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37950692

RESUMEN

Hard and superconducting materials play significant roles in their respective application areas and are also crucial research fields in condensed matter physics. Materials with the key properties of both hard and superconducting properties could lead to technology development, but it is also full of challenges. Herein, we report the synthesis of high-quality metastable W3P single crystals with superconductivity and excellent mechanical properties. The synergistic effect of temperature and pressure was effective in suppressing further decomposition of metastable W3P as-synthesized by our synthesis technique (high-pressure and high-temperature method). The transport and magnetic measurements indicate that W3P is a typical type-II BCS superconductor, displaying a superconducting transition temperature of 5.9 K and an impressive critical magnetic field of 4.35 T. Theory calculations reveal a metallic property in W3P, and the phonon modes of the vibration of W atoms are important for electron-phonon interaction. Meanwhile, W3P shows excellent mechanical properties with a high fracture toughness of 8 MPa m1/2 and an impressive asymptotic hardness of 22 GPa, which is currently reported as being the hardest among transition metal phosphides. It opens up a new class of advanced materials that combine excellent mechanical properties with superconductivity.

8.
Pestic Biochem Physiol ; 194: 105502, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532322

RESUMEN

Rice sheath blight caused by Rhizoctonia solani Kühn is a major fungal disease that plagues commercially grown rice. Occurring mainly in leaf sheaths and leaves, the disease leads to great losses in food production. ß-amino-butyric acid (BABA) has been demonstrated to activate an induced resistance response and is a potent inducer of broad-spectrum disease resistance in different plant species. In this study, ß-amino-butyric acid conjugate of phenazine-1-carboxylic acid (PCA) with prominent induced resistance to rice sheath blight was tested. The in vitro fungicidal activity, as well as in vivo efficacy, systemicity, induced resistance and defense enzyme activity of BABA conjugate of PCA against R. solani in rice seedlings was systematically evaluated. The results indicated that in vitro fungicidal activity of PCA-ß-aminobutyric acid (4e) against R. solani was lower than that of PCA, but in vivo curative ability of 4e was the highest among all tested compounds. The systemicity tests in rice seedlings revealed that PCA did not possess phloem mobility, while 4e exhibited moderate phloem mobility but much lower thanα-amino-butyric acid conjugate of PCA (4d). In addition, Compound 4e showed the highest induced activity against rice sheath blight. The observed effects of defense enzymes help to explain this high level of induced activity. The current research results indicate that in rice seedlings, BABA conjugate of PCA induce observable resistance to rice sheath blight and exhibit moderate phloem mobility, which could be used as an induced resistance fungicide against rice sheath blight in commercial rice production. The BABA conjugate of PCA might provide a useful example of induced resistance to R. solani.


Asunto(s)
Oryza , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Rhizoctonia , Plantones
9.
Pestic Biochem Physiol ; 194: 105468, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532309

RESUMEN

High level resistance for a variety of insecticides has emerged in Bemisia tabaci, a globally notorious insect. Neonicotinoid insecticides have been applied widely to control B. tabaci. Whether a differentially expressed gene CYP6DB3 discovered from transcriptome data of B. tabaci is involved in the resistance to neonicotinoid insecticides remains unclear. In the study, CYP6DB3 expression was significantly up-regulated in both thiamethoxam- and imidacloprid-resistant strains relative to the susceptive strains. We also found that CYP6DB3 expression was up-regulated after B. tabaci adults were exposed to thiamethoxam and imidacloprid. Moreover, knocking down CYP6DB3 expression via feeding corresponding dsRNA significantly reduced CYP6DB3 mRNA levels by 34.1%. Silencing CYP6DB3 expression increased the sensitivity of B. tabaci Q adults against both thiamethoxam and imidacloprid. Overexpression of CYP6DB3 gene reduced the toxicity of imidacloprid and thiamethoxam to transgenic D. melanogaster. In addition, metabolic studies showed that CYP6DB3 can metabolize 24.41% imidacloprid in vitro. Collectively, these results strongly support that CYP6DB3 plays an important role in the resistance of B. tabaci Q to imidacloprid and thiamethoxam. This work will facilitate a deeper insight into the part of cytochrome P450s in the evolution of insecticide resistance and provide a theoretical basis for the development of new integrated pest resistance management.


Asunto(s)
Hemípteros , Insecticidas , Animales , Tiametoxam/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Neonicotinoides/farmacología , Neonicotinoides/metabolismo , Nitrocompuestos/farmacología , Nitrocompuestos/metabolismo , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
10.
Molecules ; 28(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894562

RESUMEN

Crop fungal diseases pose a serious threat to global crop production and quality. Developing new and efficient fungicides is an important measure to control crop diseases. Phenylthiazole was found to be an excellent antifungal skeleton based on our previous study on the structural optimization and biological activity of the natural product thiasporine A. To find new fungicides, 45 phenylthiazole derivatives containing an acylhydrazone moiety were designed and synthesized by the principle of active substructure splicing. Forty-two of the forty-five compounds are novel, except for compounds E1, E14, and E33. Their structures were structurally characterized by 1H NMR, 13C NMR, and HRMS. The antifungal activities of the target compounds against Magnaporthe oryzae Colletotrichum camelliaet, Bipolaris maydis, and Sclerotinia sclerotiorum were evaluated at 25 µg/mL. The bioassay results revealed that most of these compounds exhibited excellent antifungal activities against M. oryzae and C. camelliaet at 25 µg/mL. In particular, compounds E4, E10, E14, E17, E23, E26, and E27 showed the inhibition rate of more than 80% against M. oryzae, with EC50 values of 1.66, 2.01, 2.26, 1.45, 1.50, 1.29, and 2.65 µg/mL, respectively, which were superior to that of the commercial fungicides Isoprothiolane (EC50 = 3.22 µg/mL) and Phenazine-1-carboxylic acid (EC50 = 27.87 µg/mL). The preliminary structure-activity relationship (SAR) results suggested that introducing methyl, halogen, or methoxy at the ortho-position of R1 and the para-position of R2 can endow the final structure with excellent antifungal activity against M. oryzae. The current results provide useful data for developing phenylthiazole derivatives as new fungicides for controlling rice blast caused by M. oryzae.


Asunto(s)
Fungicidas Industriales , Magnaporthe , Antifúngicos/química , Fungicidas Industriales/farmacología , Relación Estructura-Actividad , Espectroscopía de Resonancia Magnética
11.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903319

RESUMEN

In the search for crop protectants, amino acid ester conjugates have been widely investigated as potential antifungal agents. In this study, a series of rhein-amino acid ester conjugates were designed and synthesized in good yields, and their structures were confirmed by 1H-NMR, 13C-NMR and HRMS. The bioassay results revealed that most of the conjugates exhibited potent inhibitory activity against R. solani and S. sclerotiorum. In particular, conjugate 3c had the highest antifungal activity against R. solani with an EC50 value of 0.125 mM. For S. sclerotiorum, conjugate 3m showed the highest antifungal activity with an EC50 value of 0.114 mM. Satisfactorily, conjugate 3c exhibited better protective effects than that of the positive control, physcion, against powdery mildew in wheat. This research supports the role of rhein-amino acid ester conjugates as potential antifungal agents for plant fungal diseases.


Asunto(s)
Antifúngicos , Fungicidas Industriales , Antifúngicos/farmacología , Ésteres , Aminoácidos , Antraquinonas , Relación Estructura-Actividad , Fungicidas Industriales/farmacología , Estructura Molecular
12.
Plant Cell Environ ; 45(8): 2476-2491, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35689480

RESUMEN

Inter-tissue communication is instrumental to coordinating the whole-body level behaviour for complex multicellular organisms. However, little is known about the regulation of inter-tissue information exchange. Here we carried out genetic screens for root-to-shoot mobile silencing in Arabidopsis plants with a compromised small RNA-mediated gene silencing movement rate and identified radical-induced cell death 1 (RCD1) as a critical regulator of root-shoot communication. RCD1 belongs to a family of poly (ADP-ribose) polymerase proteins, which are highly conserved across land plants. We found that RCD1 coordinates symplastic and apoplastic movement by modulating the sterol level of lipid rafts. The higher superoxide production in rcd1-knockout plants resulted in lower plasmodesmata (PD) frequency and altered PD structure in the symplasm of the hypocotyl cortex. Furthermore, the mutants showed increased lateral area of tracheary pits, which reduced axial movement. Our study highlights a novel mechanism through which root-to-shoot long-distance signalling can be modulated both symplastically and apoplastically.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Raíces de Plantas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Especies Reactivas de Oxígeno/metabolismo
13.
Pestic Biochem Physiol ; 183: 105086, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430076

RESUMEN

To improve the selectivity of the fenoxaprop herbicide to rice and barnyard grass, a series of fenoxaprop-P-ethyl-amino acid ester conjugates were designed and synthesized, and tested for biological activity as well as their phloem mobility. The bioassay results indicated that the target compounds possessed better activity against barnyard grass (Echinochloa crusgalli) than rape (Brassica campestris L.) at the concentration of 0.5 mmol/L. Compounds 3h and 3i, showed more than 70% control efficiency against barnyard grass, while less than 30% for rape. The compounds showed less impact on rice after spray treatment than in the germination test. Compounds 3i, 3j, and 3k showed excellently herbicidal activities against barnyard grass and low phytotoxicity to rice. Compound 3k showed 6.1% phytotoxicity to rice at a spray concentration of 0.25 mmol/L, better than fenoxaprop-P-ethyl (61.6%) at the same concentration. The selectivity results of the target compounds revealed that most of compounds obviously reduced phytotoxicity to rice while retaining herbicidal activity of barnyard grass. The herbicidal activity of compound 3d compared to FPE was increased by 50%, while its safety on rice was also increased by 50%. The concentration of the compounds in barnyard grass roots was higher than in rice roots, showing greater phloem mobility. In particular, the concentration of compound 3d on barnyard grass exhibited 142.72 mg/kg which was 3 times as much as Fenoxaprop, while its concentration on rice exhibited 3.65 mg/kg, the results revealed that the difference of phloem mobility might be the important reason for causing the selectivity.


Asunto(s)
Echinochloa , Herbicidas , Oryza , Aminoácidos/metabolismo , Echinochloa/metabolismo , Ésteres/metabolismo , Herbicidas/química , Herbicidas/toxicidad , Oryza/metabolismo , Floema/fisiología
14.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956949

RESUMEN

The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide's physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 µΜ, 13.98 µΜ, and 17.63 µΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 µΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.


Asunto(s)
Fabaceae , Plaguicidas , Aminoácidos/química , Fabaceae/metabolismo , Glicina/farmacología , Plaguicidas/análisis , Fenazinas , Floema/química , Ricinus/metabolismo
15.
J Asian Nat Prod Res ; 23(5): 452-465, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32378430

RESUMEN

A total of 15 novel-substituted 3-(benzylsulfanyl)-1H-1,2,4-triazol-5-ylamine and 10 novel-substituted 3-benzylmercapto-1,2,4-triazol derivatives were synthesized based on the natural product phenazine-1-carboxylic acid (PCA). Their structures were confirmed by 1H-NMR, 13C-NMR, HRMS, and X-ray. Most substituted 3-benzylmercapto-1,2,4-triazol derivatives displayed very strong fungicidal activity against one or multiple plant pathogens in vitro and in vivo. Compounds 8b, 8h, and 8i showed a broad spectrum of fungicidal activity. Further field experiments indicated that compounds 8b, 8c, and 8h displayed better efficacy against rice blast (Pyricularia oryzae) than PCA. These data demonstrate that compounds 8b, 8c, and 8h are promising fungicidal candidates, deserving further studies.[Formula: see text].


Asunto(s)
Fungicidas Industriales , Fenazinas , Ascomicetos , Fungicidas Industriales/farmacología , Estructura Molecular , Fenazinas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología
16.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731414

RESUMEN

Rhus potaninii Maxim, a type of sumac, is an economically important tree widely cultivated in mountainous areas of western and central China. A gall, called the bellied gallnut, induced by the aphid, Kaburagia rhusicola Takagi, is important in the food, medical, and chemical industries in China. Volatiles from R. potaninii were found to attract K. rhusicola, but little is known about them. The chemical composition of these volatiles was investigated using GC-MS analysis and Y-tube olfactometer methods. Twenty-five compounds accounting for 55.3% of the volatiles were identified, with the highest proportion of 1-(4-ethylphenyl)ethanone (11.8%), followed by 1-(4-hydroxy-3-methylphenyl)ethanone (11.2%) and p-cymen-7-ol (7.1%). These findings provide a theoretical basis for the preparation of attractants and could eventually lead to increased bellied gallnut yield.


Asunto(s)
Áfidos/fisiología , Factores Quimiotácticos/química , Rhus/química , Compuestos Orgánicos Volátiles/química , Animales , Factores Quimiotácticos/farmacología , Compuestos Orgánicos Volátiles/farmacología
17.
Langmuir ; 35(9): 3337-3345, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30730141

RESUMEN

Chiral nanostructures exhibited distinctive functions and attractive applications in complex biological systems, which demonstrated the subject of many outstanding research studies. In this work, various hierarchical composite film nanostructures were designed via supramolecular self-assembly using chiral amphiphilic glutamate derivatives and achiral porphyrin derivatives and their macroscopic enantioselective recognition properties were investigated. We have found that intermolecular hydrogen-bonding interactions between water (donor and acceptor) and N, N-dimethylformamide (DMF) as well as chloroform (CHCl3) (acceptor only) and DMF could subtly alter the molecular packing and significantly affected the supramolecular self-assembled nanostructures and triggered circular dichroism (CD) signal reversal. Present research work exemplified a feasible method to fabricate chiral flower-like and brick-like nanostructure films in different mixed solvents and large-scale chiral transfer from the molecular level to complex structures, which also provided a facile approach to identify certain l-/d-amino acids by means of contact angle detection using present obtained self-assembled composted films.

18.
J Asian Nat Prod Res ; 21(6): 587-596, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29667425

RESUMEN

To improve the physical and chemical properties of phenazine-1-carboxylic acid (PCA) and find higher antifungal compounds, a series of PCA amide analogues were designed and synthesized and their structures were confirmed by 1H NMR, HRMS, and X-ray. Most compounds showed some antifungal activities in vitro. Particularly, compound 3d exhibited inhibition effect against Pyriculariaoryzac Cavgra with EC50 value of 28.7 µM and compound 3q exhibited effect against Rhizoctonia solani with EC50 value of 24.5 µM, more potently active than that of the positive control PCA with its EC50 values of 37.3 µM (Pyriculariaoryzac Cavgra) and 33.2 µM (Rhizoctonia solani), respectively.


Asunto(s)
Antifúngicos/síntesis química , Antifúngicos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Fenazinas/síntesis química , Fenazinas/farmacología , Rhizoctonia/efectos de los fármacos , Relación Estructura-Actividad , Difracción de Rayos X
19.
Molecules ; 24(23)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756955

RESUMEN

Abstract: To find good antifungal substances by the bioactivity-guided isolation method, we tracked down the effective antifungal substances in the bark and leaves of Zanthoxylum avicennae, and isolated three antifungal compounds 1, 2, and 3. The structures were identified as xanthyletin, luvangetin, and avicennin by 1H-NMR, 13C-NMR, and HRMS spectra. Particularly, compound 2 had several isomers, and the 1H-NMR spectra of 2 in different solvents showed a significant difference. To determine the stereo structure of 2, a single crystal was prepared and identified by X-ray diffraction as Luvangetin. Moreover, the difference of 1H-NMR data of 2 between in solvent dimethyl sulfoxide-d6 (DMSO-d6) and deuterated chloroform (CDCl3), and other reported isomers were discussed for the first time. The bioassay results indicated that the three compounds 1, 2, and 3 displayed low to high antifungal activities against tested phytopathogenic fungi. In particular, all compounds 1, 2, and 3 showed excellent antifungal activities against Pyricularia oryzae and Z. avicennae, with the values of half maximal effective concentration (EC50) ranging from 31 to 61 mg/L, and compound 3 was also identified as a more potent inhibitor against Fusaium graminearum (EC50 = 43.26 ± 1.76 mg/L) compared with fungicide PCA (phenazine-1-carboxylic acid) (EC50 = 52.34 ± 1.53 mg/L). The results revealed that compounds 1, 2, and 3 were the main antifungal substances of Z. avicennae, and can be used as lead compounds of a fungicide, which has good development value and prospect.


Asunto(s)
Antifúngicos , Fusarium/crecimiento & desarrollo , Corteza de la Planta/química , Hojas de la Planta/química , Zanthoxylum/química , Antifúngicos/química , Antifúngicos/farmacología , Relación Dosis-Respuesta a Droga
20.
Nanotechnology ; 29(44): 445603, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30129923

RESUMEN

A new type of voltammetric sensor material has been fabricated via a facile self-assembled method. A modified glassy carbon electrode (GCE) by phenylsulfonic groups grafted multi-walled carbon nanotubes (CNT-SO3H) with dye molecules via Langmuir-Blodgett (LB) assembling (CNT-SO3H/dye-LB/GCE) were prepared for detecting trace levels of cadmium (Cd2+) ions by square wave anodic stripping voltammetry. The synergy effect between CNT-SO3H and dye as well as orderly aggregates in composite LB films contributed to greatly enhancing the determination performance. Under selected conditions, voltammetric response of the fabricated electrochemical sensor in 0.1 M acetate buffer solution containing Bi3+ ions for Cd2+ ions was linear with its concentration in the range 0.1 to 1.2 µM, with a detection limit of 0.08 µM. In addition, the preparation process of self-assembled composite film modified electrodes was simple, non-toxic, exhibiting higher sensitivity and potential application prospects in aspects of heavy metal ions detection and environmental analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA