Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
2.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588412

RESUMEN

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Animales , Interferencia de ARN , MicroARNs/genética , MicroARNs/metabolismo , Saliva , Hemípteros/fisiología , Inmunidad de la Planta/genética , Oryza/genética
3.
J Virol ; 98(10): e0099724, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39212930

RESUMEN

Negevirus is a recently proposed taxon of arthropod-infecting virus, which is associated with plant viruses of two families (Virgaviridae and Kitaviridae). Nevertheless, the evolutionary history of negevirus-host and its relationship with plant viruses remain poorly understood. Endogenous nege-like viral elements (ENVEs) are ancient nege-like viral sequences integrated into the arthropod genomes, which can serve as the molecular fossil records of previous viral infection. In this study, 292 ENVEs were identified in 150 published arthropod genomes, revealing the evolutionary history of nege-like viruses and two related plant virus families. We discovered three novel and eight strains of nege-like viruses in 11 aphid species. Further analysis indicated that 10 ENVEs were detected in six aphid genomes, and they were divided into four types (ENVE1-ENVE4). Orthologous integration and phylogenetic analyses revealed that nege-like viruses had a history of infection of over 60 My and coexisted with aphid ancestors throughout the Cenozoic Era. Moreover, two nege-like viral proteins (CP and SP24) were highly homologous to those of plant viruses in the families Virgaviridae and Kitaviridae. CP- and SP24-derived ENVEs were widely integrated into numerous arthropod genomes. These results demonstrate that nege-like viruses have a long-term coexistence with arthropod hosts and plant viruses of the two families, Virgaviridae and Kitaviridae, which may have evolved from the nege-like virus ancestor through horizontal virus transfer events. These findings broaden our perspective on the history of viral infection in arthropods and the origins of plant viruses. IMPORTANCE: Although negevirus is phylogenetically related to plant virus, the evolutionary history of negevirus-host and its relationship with plant virus remain largely unknown. In this study, we used endogenous nege-like viral elements (ENVEs) as the molecular fossil records to investigate the history of nege-like viral infection in arthropod hosts and the evolution of two related plant virus families (Virgaviridae and Kitaviridae). Our results showed the infection of nege-like viruses for over 60 My during the arthropod evolution. ENVEs highly homologous to viral sequences in Virgaviridae and Kitaviridae were present in a wide range of arthropod genomes but were absent in plant genomes, indicating that plant viruses in these two families possibly evolved from the nege-like virus ancestor through cross-species horizontal virus transmission. Our findings provide a new perspective on the virus-host coevolution and the origins of plant viruses.


Asunto(s)
Áfidos , Artrópodos , Evolución Molecular , Filogenia , Virus de Plantas , Animales , Áfidos/virología , Virus de Plantas/genética , Virus de Plantas/clasificación , Artrópodos/virología , Coevolución Biológica , Proteínas Virales/genética , Genoma Viral/genética , Interacciones Huésped-Patógeno/genética
4.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928081

RESUMEN

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Asunto(s)
Tenuivirus , Virosis , Animales , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Tenuivirus/metabolismo , Insectos Vectores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
5.
BMC Genomics ; 25(1): 952, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39396954

RESUMEN

BACKGROUND: MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS: A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION: Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.


Asunto(s)
Antocianinas , Fragaria , Regulación de la Expresión Génica de las Plantas , Filogenia , Factores de Transcripción , Antocianinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Duplicación de Gen , Genoma de Planta , Familia de Multigenes , Regiones Promotoras Genéticas
6.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212677

RESUMEN

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Asunto(s)
Heterópteros , Transcriptoma , Animales , Heterópteros/genética , Glándulas Salivales , Perfilación de la Expresión Génica/métodos , Saliva
7.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831402

RESUMEN

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Asunto(s)
Aclarubicina , Antraciclinas , Leucemia Mieloide Aguda , Animales , Femenino , Humanos , Masculino , Aclarubicina/farmacología , Aclarubicina/uso terapéutico , Antraciclinas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Resultado del Tratamiento
8.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37804524

RESUMEN

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Asunto(s)
Áfidos , Hemípteros , Animales , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Áfidos/metabolismo , Proteínas y Péptidos Salivales/genética
9.
J Gen Virol ; 105(4)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
10.
Br J Haematol ; 204(5): 2049-2056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343073

RESUMEN

Iron overload from repeated transfusions has a negative impact on cardiac function, and iron chelation therapy may help prevent cardiac dysfunction in transfusion-dependent patients with myelodysplastic syndromes (MDS). TELESTO (NCT00940602) was a prospective, placebo-controlled, randomised study to evaluate the iron chelator deferasirox in patients with low- or intermediate-1-risk MDS and iron overload. Echocardiographic parameters were collected at screening and during treatment. Patients receiving deferasirox experienced a significant decrease in the composite risk of hospitalisation for congestive heart failure (CHF) or worsening of cardiac function (HR = 0.23; 95% CI: 0.05, 0.99; nominal p = 0.0322) versus placebo. No significant differences between the arms were found in left ventricular ejection fraction, ventricular diameter and mass or pulmonary artery pressure. The absolute number of events was low, but the enrolled patients were younger than average for patients with MDS, with no serious cardiac comorbidities and a modest cardiovascular risk profile. These results support the effectiveness of deferasirox in preventing cardiac damage caused by iron overload in this patient population. Identification of patients developing CHF is challenging due to the lack of distinctive echocardiographic features. The treatment of iron overload may be important to prevent cardiac dysfunction in these patients, even those with moderate CHF risk.


Asunto(s)
Deferasirox , Quelantes del Hierro , Sobrecarga de Hierro , Síndromes Mielodisplásicos , Humanos , Deferasirox/uso terapéutico , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/complicaciones , Masculino , Femenino , Quelantes del Hierro/uso terapéutico , Persona de Mediana Edad , Anciano , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/tratamiento farmacológico , Estudios Prospectivos , Benzoatos/uso terapéutico , Benzoatos/efectos adversos , Insuficiencia Cardíaca/etiología , Reacción a la Transfusión/etiología , Ecocardiografía , Adulto , Anciano de 80 o más Años , Triazoles/uso terapéutico , Triazoles/efectos adversos , Transfusión Sanguínea
11.
Small ; 20(33): e2401162, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511537

RESUMEN

Constructing the pore structures in amorphous metal oxide nanosheets can enhance their electrocatalytic performance by efficiently increasing specific surface areas and facilitating mass transport in electrocatalysis. However, the accurate synthesis for porous amorphous metal oxide nanosheets remains a challenge. Herein, a facile nitrate-assisted oxidation strategy is reported for synthesizing amorphous mesoporous iridium oxide nanomeshes (a-m IrOx NMs) with a pore size of ∼4 nm. X-ray absorption characterizations indicate that a-m IrOx NMs possess stretched Ir─O bonds and weaker Ir-O interaction compared with commercial IrO2. Combining thermogravimetric-fourier transform infrared spectroscopy with differential scanning calorimetry measurements, it is demonstrated that sodium nitrate, acting as an oxidizing agent, is conducive to the formation of amorphous nanosheets, while the NO2 produced by the in situ decomposition of nitrates facilitates the generation of pores within the nanomeshes. As an anode electrocatalyst in proton exchange membrane water electrolyzer, a-m IrOx NMs exhibit superior performance, maintaining a cell voltage of 1.67 V at 1 A cm-2 for 120 h without obvious decay with a low loading (0.4 mgcatalyst cm-2). Furthermore, the nitrate-assisted method is demonstrated to be a general approach to prepare various amorphous metal oxide nanomeshes, including amorphous RhOx, TiOx, ZrOx, AlOx, and HfOx nanomeshes.

12.
Blood ; 140(10): 1132-1144, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35653587

RESUMEN

Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.


Asunto(s)
Leucemia Promielocítica Aguda , Proteínas Proto-Oncogénicas c-myb , Proteínas WT1 , Cromatina/metabolismo , Mutación de Línea Germinal , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Polimorfismo de Nucleótido Simple , Unión Proteica/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas WT1/genética
13.
FASEB J ; 37(2): e22783, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36705056

RESUMEN

Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, ß- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.


Asunto(s)
Cristalino , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diferenciación Celular , Cristalino/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Epiteliales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
14.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981875

RESUMEN

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Asunto(s)
Genoma Viral , Luffa , Sistemas de Lectura Abierta , Filogenia , Genoma Viral/genética , Luffa/virología , Animales , China , Virus ARN Bicatenario/genética , Virus ARN Bicatenario/clasificación , Virus ARN Bicatenario/aislamiento & purificación , Secuenciación Completa del Genoma , Proteínas Virales/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética
15.
Arch Virol ; 169(1): 19, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180588

RESUMEN

The complete genomic sequence of a novel robigovirus, provisionally named "Mentha arvensis robigovirus 1" (MARV1), was determined by combining next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The complete genomic sequence of this new virus is 7617 nucleotides in length, excluding the 3' poly(A) tail. The MARV1 genome encodes a putative replicase, "triple gene block" proteins, and a coat protein. Phylogenetic analysis demonstrated that MARV1 is a member of the genus Robigovirus, with closest relationships to African oil palm ringspot virus (AOPRV). Furthermore, MARV1-derived small interfering RNAs (siRNAs) showed typical patterns of plant-virus-derived siRNAs produced by the host antiviral RNA interference pathway. This is the first report of a plant virus of the genus Robigovirus in M. arvensis.


Asunto(s)
Flexiviridae , Mentha , Filogenia , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero , ARN Interferente Pequeño/genética
16.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850364

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Asunto(s)
Genoma Viral , Hemípteros , Sistemas de Lectura Abierta , Filogenia , Virus ARN , ARN Viral , Animales , Hemípteros/virología , Genoma Viral/genética , ARN Viral/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Enfermedades de las Plantas/virología , Oryza/virología , Secuenciación Completa del Genoma , ARN Interferente Pequeño/genética
17.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995418

RESUMEN

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Asunto(s)
Cordyceps , Genoma Viral , Filogenia , ARN Viral , Cordyceps/genética , ARN Viral/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Proteínas Virales/genética , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , ARN Polimerasa Dependiente del ARN/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Sistemas de Lectura Abierta
18.
BMC Pregnancy Childbirth ; 24(1): 705, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468487

RESUMEN

OBJECTIVE: Chemotherapy during pregnancy has a certain risk of causing a series of complications, such as miscarriage, premature birth, or fetal growth restriction, although the relationship between these complications and chemotherapy is currently unclear. This experiment focuses on the possible damage mechanism of the chemotherapeutic drug paclitaxel on placental trophoblast cells, and explores whether chemotherapy can affect pregnancy outcomes by directly damaging placental tissue. METHODS: This study explored the mechanism of paclitaxel induced damage on placental trophoblast cell lines JEG-3 and BEWO through immunofluorescence staining, Western blot experiments, cell flow cytometry, Seahorese cell metabolism experiments, and mouse modeling verification. RESULTS: The experiment found that paclitaxel could induce JEG-3 and BEWO cells to produce reactive oxygen species (ROS), and elevate the ratio of Bax/Bcl-2 expression. Besides, paclitaxel mediated the reduction of mitochondrial membrane potential in JEG-3 and BEWO cells, causing damage and leading to mitochondrial autophagy and the occurrence of unfolded protein response. Paclitaxel inhibited the glycolysis rate of JEG-3 and BEWO cells, and leaded to impaired mitochondrial function, including decreased basal respiratory values, decreased respiratory reserve capacity, and proton leakage. In pregnant mice with tumor modeling, paclitaxel could cause DNA damage in placental tissue cells, and might lead to apoptosis of chemotherapy mice placental tissue cells and impairment of normal physiological functions. CONCLUSION: Paclitaxel may directly or indirectly affect the normal physiological functions of placental trophoblast cells, including energy metabolism and protein synthesis dysfunction, which may be related to the adverse pregnancy outcomes caused by paclitaxel chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos , Paclitaxel , Placenta , Especies Reactivas de Oxígeno , Trofoblastos , Paclitaxel/efectos adversos , Paclitaxel/farmacología , Femenino , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Embarazo , Animales , Ratones , Humanos , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/farmacología , Placenta/efectos de los fármacos , Placenta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Línea Celular Tumoral , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Autofagia/efectos de los fármacos , Línea Celular
19.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836579

RESUMEN

Plant viruses employ diverse virulence strategies to achieve successful infection, but there are few known general strategies of viral pathogenicity and transmission used by widely different plant viruses. Here, we report a class of independently evolved virulence factors in different plant RNA viruses which possess active transcriptional repressor activity. Rice viruses in the genera Fijivirus, Tenuivirus, and Cytorhabdovirus all have transcriptional repressors that interact in plants with the key components of jasmonic acid (JA) signaling, namely mediator subunit OsMED25, OsJAZ proteins, and OsMYC transcription factors. These transcriptional repressors can directly disassociate the OsMED25-OsMYC complex, inhibit the transcriptional activation of OsMYC, and then combine with OsJAZ proteins to cooperatively attenuate the JA pathway in a way that benefits viral infection. At the same time, these transcriptional repressors efficiently enhanced feeding by the virus insect vectors by repressing JA signaling. Our findings reveal a common strategy in unrelated plant viruses in which viral transcriptional repressors hijack and repress the JA pathway in favor of both viral pathogenicity and vector transmission.


Asunto(s)
Insectos Vectores/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/fisiología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Virus ARN/genética , Virus ARN/patogenicidad , Proteínas Represoras/fisiología , Factores de Virulencia/genética , Animales , Proteínas de Plantas/clasificación , Proteínas Represoras/clasificación
20.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33495363

RESUMEN

As all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) are widely accepted in treating acute promyelocytic leukemia (APL), deescalating toxicity becomes a research hotspot. Here, we evaluated whether chemotherapy could be replaced or reduced by ATO in APL patients at different risks. After achieving complete remission with ATRA-ATO-based induction therapy, patients were randomized (1:1) into ATO and non-ATO groups for consolidation: ATRA-ATO versus ATRA-anthracycline for low-/intermediate-risk patients, or ATRA-ATO-anthracycline versus ATRA-anthracycline-cytarabine for high-risk patients. The primary end point was to assess disease-free survival (DFS) at 3 y by a noninferiority margin of -5%; 855 patients were enrolled with a median follow-up of 54.9 mo, and 658 of 755 patients could be evaluated at 3 y. In the ATO group, 96.1% (319/332) achieved 3-y DFS, compared to 92.6% (302/326) in the non-ATO group. The difference was 3.45% (95% CI -0.07 to 6.97), confirming noninferiority (P < 0.001). Using the Kaplan-Meier method, the estimated 7-y DFS was 95.7% (95% CI 93.6 to 97.9) in ATO and 92.6% (95% CI 89.8 to 95.4) in non-ATO groups (P = 0.066). Concerning secondary end points, the 7-y cumulative incidence of relapse (CIR) was significantly lower in ATO (2.2% [95% CI 1.1 to 4.2]) than in non-ATO group (6.1% [95% CI 3.9 to 9.5], P = 0.011). In addition, grade 3 to 4 hematological toxicities were significantly reduced in the ATO group during consolidation. Hence, ATRA-ATO in both chemotherapy-replacing and -reducing settings in consolidation is not inferior to ATRA-chemotherapy (https://www.clinicaltrials.gov/, NCT01987297).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Trióxido de Arsénico/administración & dosificación , Leucemia Promielocítica Aguda/tratamiento farmacológico , Tretinoina/administración & dosificación , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Trióxido de Arsénico/efectos adversos , Quimioterapia de Consolidación/efectos adversos , Citarabina/administración & dosificación , Citarabina/efectos adversos , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inducción de Remisión , Resultado del Tratamiento , Tretinoina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA