Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126047

RESUMEN

Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.


Asunto(s)
Aminoácidos , Brassica , Cadmio , Raíces de Plantas , Cadmio/toxicidad , Cadmio/metabolismo , Brassica/metabolismo , Brassica/efectos de los fármacos , Aminoácidos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Transporte Biológico , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
J Environ Manage ; 284: 112056, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548754

RESUMEN

Brassica napus L. (oilseed rape) was grown with daikon and white lupin in a polyvinyl chloride split pot experiment (with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions) to examine the effect of rhizosphere interaction on the cadmium uptake. The results showed that shoot and root biomasses of oilseed rape were 40.66% and 26.94% less than that of the monocropped treatment (solid barrier) when intercropping with daikon under the rhizosphere complete interaction. However, the intermingling of roots between oilseed rape and white lupin notably enhanced the dry biomass of oilseed rape by 40.23% and decreased with the reduction of root contact. Oilseed rape intercropping with daikon enhanced the shoot Cd concentration of oilseed rape. The shoot Cd concentration (44.8 mg/kg) of oilseed rape when intercropped white lupin under complete rhizosphere interaction were greater than those of other treatments. Additionally, the intermingling of roots played a positive role in the content of citric and malic acids when intercropping with white lupin. In all systems, the BCF values of oilseed rape >5. Therefore, intercropping with white lupin may contribute to higher biomass and increased uptake Cd by oilseed rape. We can toward sustainable positive effects on phytoremediation that based on a better understanding of rhizosphere processes.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Raíces de Plantas/química , Rizosfera
3.
Ecotoxicol Environ Saf ; 205: 111162, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32836158

RESUMEN

The mechanisms of intercropping increasing plant biomass, cadmium accumulation, and organic acids secreted in rhizosphere soil are still unclear. Oilseed rape and intercrops were grown in boxes separated either with no barrier between the compartments or by a nylon mesh barrier (37 µm) to license partial root interaction, or a solid barrier to stop any root interactions. Two intercropping systems (oilseed rape-faba bean and oilseed rape-ryegrass) were carried out in soil with Cd content of 5 mg/kg. The intermingling of roots between oilseed rape and faba bean enhanced the biomass of oilseed rape. However, the biomass was negatively affected implying the higher nutrient apportionment to the ryegrass than oilseed rape. Oilseed rape intercropping with both faba bean and ryegrass played a positive role in the shoot Cd concentration of oilseed rape. The intermingling of roots played a positive role in the citric and malic acids when intercropping with faba bean. A remarkable increase in water-soluble Cd and DTPA-Cd content was observed during oilseed rape-faba bean complete root interaction treatment, up to 175.00% and 46.65%, respectively, which compare with the monoculture treatment. In both systems, the translocation factor values were higher for oilseed rape (O-F system) than for the other test plants and were always >1. Thus the Cd removal potential of oilseed rape can be further improved in the future by optimizing agronomic practices and intercropping with faba bean.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Cadmio/metabolismo , Producción de Cultivos/métodos , Lolium/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Vicia faba/crecimiento & desarrollo , Bioacumulación , Biomasa , Brassica napus/metabolismo , China , Lolium/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química , Vicia faba/metabolismo
4.
Adv Exp Med Biol ; 983: 1-20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28639188

RESUMEN

Small RNA partnering with Argonaute (Ago) proteins plays important roles in diverse biological processes mainly by suppressing the expression of cognate target sequences. Mounting evidence reveals that the small RNA-Ago pathway can also positively regulate gene expression, a phenomenon termed as RNA activation (RNAa), which is evolutionarily conserved from Caenorhabditis elegans to human. In this chapter, I provide a general overview of mammalian RNAa phenomena and their basic characteristics and discuss recent advances toward understanding the nature of the molecular machinery responsible for RNAa and the development of RNAa-based research tools and therapeutics.


Asunto(s)
Proteínas Argonautas/genética , ARN Pequeño no Traducido/genética , Activación Transcripcional , Animales , Humanos , Regiones Promotoras Genéticas
5.
Adv Exp Med Biol ; 983: 217-229, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28639203

RESUMEN

Small activating RNAs (saRNAs) are a class of artificially designed short duplex RNAs targeted at the promoter of a particular gene to upregulate its expression via a mechanism known as RNA activation (RNAa) and hold great promise for treating a wide variety of diseases including those undruggable by conventional therapies. The therapeutic benefits of saRNAs have been demonstrated in a number of preclinical studies carried out in different disease models including cancer. With many tumor suppressor genes (TSGs) downregulated due to either epigenetic mechanisms or haploinsufficiency resulting from deletion/mutation, cancer is an ideal disease space for saRNA therapeutics which can restore the expression of TSGs via epigenetic reprogramming. The p21WAF1/CIP gene is a TSG frequently downregulated in cancer and an saRNA for p21WAF1/CIP known as dsP21-322 has been identified to be a sequence-specific p21WAF1/CIP activator in a number of cancer types. In this chapter, we review preclinical development of medicinal dsP21-322 for cancer, especially prostate cancer and bladder cancer, and highlight its potential for further clinical development.


Asunto(s)
Neoplasias de la Próstata/terapia , ARN Bicatenario/uso terapéutico , ARN Pequeño no Traducido/uso terapéutico , Neoplasias de la Vejiga Urinaria/terapia , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Masculino , Regiones Promotoras Genéticas
6.
PLoS Genet ; 9(9): e1003821, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086155

RESUMEN

Argonaute proteins are often credited for their cytoplasmic activities in which they function as central mediators of the RNAi platform and microRNA (miRNA)-mediated processes. They also facilitate heterochromatin formation and establishment of repressive epigenetic marks in the nucleus of fission yeast and plants. However, the nuclear functions of Ago proteins in mammalian cells remain elusive. In the present study, we combine ChIP-seq (chromatin immunoprecipitation coupled with massively parallel sequencing) with biochemical assays to show that nuclear Ago1 directly interacts with RNA Polymerase II and is widely associated with chromosomal loci throughout the genome with preferential enrichment in promoters of transcriptionally active genes. Additional analyses show that nuclear Ago1 regulates the expression of Ago1-bound genes that are implicated in oncogenic pathways including cell cycle progression, growth, and survival. Our findings reveal the first landscape of human Ago1-chromosomal interactions, which may play a role in the oncogenic transcriptional program of cancer cells.


Asunto(s)
Proteínas Argonautas/genética , Cromosomas/genética , ARN Polimerasas Dirigidas por ADN/genética , Factores Eucarióticos de Iniciación/genética , Neoplasias/genética , Proteínas Argonautas/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Genoma Humano , Heterocromatina/genética , Humanos , MicroARNs/genética , Neoplasias/patología , Regiones Promotoras Genéticas , Unión Proteica/genética
7.
J Cell Physiol ; 229(7): 834-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24243035

RESUMEN

Castration-resistant prostate cancer (CRPC) and its treatment are challenging issues in prostate cancer management. Here, we report that miR-663 is upregulated in CRPC tissues. Overexpression of miR-663 in prostate LNCaP cells promotes cell proliferation and invasion, neuroendocrine differentiation, and reduction in dihydrotestosterone-induced upregulation of prostate-specific antigen expression. Furthermore, results of in situ hybridization show that miR-663 expression is correlated with Gleason score and TNM stage and is an independent prognostic predictor of clinical recurrence. Together, these findings suggest that miR-663 is a potential oncomiR for CRPC and may serve as a tumor biomarker for the early diagnosis of CRPC.


Asunto(s)
MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Detección Precoz del Cáncer , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/biosíntesis , Invasividad Neoplásica/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata Resistentes a la Castración/patología
8.
RNA Biol ; 11(1): 18-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24384674

RESUMEN

The Argonaute family of proteins is highly evolutionarily conserved and plays essential roles in small RNA-mediated gene regulatory pathways and in a wide variety of cellular processes. They were initially discovered by genetics studies in plants and have been well characterized as key components of gene silencing pathways guided by small RNAs, a phenomenon known as RNA interference. Conventionally, guided by different classes of small RNAs, Argonautes bind to and silence homologous target sequences at the post-transcriptional level. Increasing lines of evidence support their multi-functional roles in the nucleus. Advances in high-throughput genome-wide methodologies have greatly facilitated our understanding of their functions in post-transcriptional gene silencing as well as in other nuclear events. In this point-of-view, we will summarize key findings from genome-wide analyses of the Ago subfamily of proteins in mammals and Drosophila, discuss their nuclear functions in the regulation of transcription and alternative splicing identified in recent years, and briefly touch upon their potential implications in cancer.


Asunto(s)
Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Interferencia de ARN/fisiología , Empalme Alternativo , Animales , Epigénesis Genética , Silenciador del Gen , Genoma , Humanos , Familia de Multigenes , Neoplasias/metabolismo
9.
RNA Biol ; 11(10): 1221-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25602906

RESUMEN

Small RNA programmed Argonautes are sophisticated cellular effector platforms known to be involved in a diverse array of functions ranging from mRNA cleavage, translational inhibition, DNA elimination, epigenetic silencing, alternative splicing and even gene activation. First observed in human cells, small RNA-induced gene activation, also known as RNAa, involves the targeted recruitment of Argonaute proteins to specific promoter sequences followed by induction of stable epigenetic changes which promote transcription. The existence of RNAa remains contentious due to its elusive mechanism. A string of recent studies in C. elegans provides unequivocal evidence for RNAa's fundamental role in sculpting the epigenetic landscape and maintaining active transcription of endogenous genes and supports the presence of a functionally sophisticated network of small RNA-Argonaute pathways consisting of opposite yet complementary "yin and yang" regulatory elements. In this review, we summarize key findings from recent studies of endogenous RNAa in C. elegans, with an emphasis on the Argonaute protein CSR-1.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Epigénesis Genética , Regulación de la Expresión Génica , MicroARNs/genética , ARN de Helminto/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Humanos
10.
Nucleic Acids Res ; 40(4): 1695-707, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22053081

RESUMEN

It is largely recognized that microRNAs (miRNAs) function to silence gene expression by targeting 3'UTR regions. However, miRNAs have also been implicated to positively-regulate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we show that expression of mouse Cyclin B1 (Ccnb1) is dependent on key factors involved in miRNA biogenesis and function (i.e. Dicer, Drosha, Ago1 and Ago2). In silico analysis identifies highly-complementary sites for 21 miRNAs in the Ccnb1 promoter. Experimental validation identified three miRNAs (miR-744, miR-1186 and miR-466d-3p) that induce Ccnb1 expression in mouse cell lines. Conversely, knockdown of endogenous miR-744 led to decreased Ccnb1 levels. Chromatin immunoprecipitation (ChIP) analysis revealed that Ago1 was selectively associated with the Ccnb1 promoter and miR-744 increased enrichment of RNA polymerase II (RNAP II) and trimethylation of histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. Functionally, short-term overexpression of miR-744 and miR-1186 resulted in enhanced cell proliferation, while prolonged expression caused chromosomal instability and in vivo tumor suppression. Such phenotypes were recapitulated by overexpression of Ccnb1. Our findings reveal an endogenous system by which miRNA functions to activate Ccnb1 expression in mouse cells and manipulate in vivo tumor development/growth.


Asunto(s)
Transformación Celular Neoplásica/genética , Ciclina B1/genética , MicroARNs/metabolismo , Regulación hacia Arriba/genética , Animales , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Inestabilidad Cromosómica , Ciclina B1/biosíntesis , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo
11.
Sci Rep ; 14(1): 6880, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519531

RESUMEN

The radiator with heat transfer capability is able to guarantee the stable operation of hydro generator set, while the long-term and continuous scouring on radiator pipes by cooling medium will lead to thinning or even perforation of pipe wall, which triggers wall failure. This paper analyzes and predicts the failure mechanism of radiator's pipe wall, and investigates the effects of water flow velocity, sand content and sand particle size on erosion damage of radiator pipe by establishing a test bench for pipe erosion. The results show that the increase of above parameters will lead to the increasing erosion rate, especially when the sand content is 1%, the velocity is 8 m/s and the sand particle size is 0.85 mm, the erosion damage will be particularly serious. Based on experimental data, BP and LSSVM models are employed to predict the pipe wall failure, and PSO algorithm is used to optimize the two models. The optimized PSO-BP has the highest accuracy with the mean absolute error (MAE) of 0.2070 and the mean absolute percentage error (MAPE) of 4.702%. The findings provide a reference for wall failure analysis of radiator, which is of great significance for unit's safe operation.

12.
PLoS One ; 19(5): e0299522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696452

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide and no pharmacological treatment is available that can achieve complete remission of HCC. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) is a recently identified HCC tumor suppressor gene which plays an important role in the development of HCC and its inactivation and reactivation has been shown to result in respectively HCC tumorigenesis and suppression. Small activating RNAs (saRNAs) have been used to achieve targeted activation of therapeutic genes for the restoration of their encoded protein through the RNAa mechanism. Here we designed and validated saRNAs that could activate LHPP expression at both the mRNA and protein levels in HCC cells. Activation of LHPP by its saRNAs led to the suppression of HCC proliferation, migration and the inhibition of Akt phosphorylation. When combined with targeted anticancer drugs (e.g., regorafenib), LHPP saRNA exhibited synergistic effect in inhibiting in vitro HCC proliferation and in vivo antitumor growth in a xenograft HCC model. Findings from this study provides further evidence for a tumor suppressor role of LHPP and potential therapeutic value of restoring the expression of LHPP by saRNA for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Pirofosfatasa Inorgánica , Neoplasias Hepáticas , Humanos , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/genética , Proliferación Celular/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones , Línea Celular Tumoral , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
13.
Environ Sci Pollut Res Int ; 31(3): 4721-4732, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38105331

RESUMEN

Finding practical solutions for utilizing agricultural organic wastes has always been a challenge. To address this, our study investigated the effects and mechanisms of different exogenous organic waste fermentation solutions on alleviating Cd stress in plants using hydroponic experiments. Out of the seven fermentation solutions examined, pea fermentation liquid (T3), chicken manure (T5), molasses (T6), and chitosan oligosaccharide broth (T9) exhibited positive effects. They increased shoot fresh weight by 1.17%, 26.83%, 7.94%, and 15.59%, and root fresh weight by 50.00%, 12.21%, 81.19%, and 19.47%, respectively. Conversely, amino acid mother liquid (T7) and potassium polyaspartate liquid (T8) reduced shoot fresh weight by 34.21% and 24.74%, and root fresh weight by 27.06% and 7.10%, respectively. All organic waste liquids reduced Cd concentration in shoots and roots. Corn fermentation liquid (T4) reduced Cd in shoots from 87.91 to 19.20 mg/kg, while molasses (T6) reduced Cd in roots from 980.94 to 260.47 mg/kg. SEM-EDX results revealed that molasses (T6) effectively repaired Cd damage on root surfaces. In addition, several waste liquids mitigated microelement absorption disturbances. All waste liquids reduced MDA, corn fermentation liquid (T4), chicken manure (T5), molasses (T6), potassium polyaspartate liquid (T8), and chitosan oligosaccharide liquid (T9) significantly decreased H2O2 by 21.6-38.3%. Structural equation model (SEM) and correlation analysis highlighted the importance of root Mg, Cu, and Zn content and CAT activity in relieving Cd stress and promoting plant growth. Overall, molasses (T6) and chicken manure (T5) demonstrated the most beneficial combined effects, while amino acid mother liquid (T7) and chitosan oligosaccharide liquid (T9) should be exercised with caution due to their weaker effects.


Asunto(s)
Quitosano , Contaminantes del Suelo , Cadmio/análisis , Peróxido de Hidrógeno/metabolismo , Quitosano/metabolismo , Fermentación , Estiércol , Potasio/metabolismo , Aminoácidos/metabolismo , Oligosacáridos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
14.
Mol Ther Nucleic Acids ; 35(1): 102147, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38435120

RESUMEN

Antisense oligonucleotides (ASOs) were the first modality to pioneer targeted gene knockdown in the treatment of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1). RNA interference (RNAi) is another mechanism of gene silencing in which short interfering RNAs (siRNAs) effectively degrade complementary transcripts. However, delivery to extrahepatic tissues like the CNS has been a bottleneck in the clinical development of RNAi. Herein, we identify potent siRNA duplexes for the knockdown of human SOD1 in which medicinal chemistry and conjugation to an accessory oligonucleotide (ACO) enable activity in CNS tissues. Local delivery via intracerebroventricular or intrathecal injection into SOD1G93A mice delayed disease progression and extended animal survival with superior efficacy compared with an ASO resembling tofersen in sequence and chemistry. Treatment also prevented disease-related declines in motor function, including improvements in animal mobility, muscle strength, and coordination. The ACO itself does not target any specific complementary nucleic acid sequence; rather, it imparts benefits conducive to bioavailability and delivery through its chemistry. The complete conjugate (i.e., siRNA-ACO) represents a novel modality for delivery of duplex RNA (e.g., siRNA) to the CNS that is currently being tested in the clinic for treatment of ALS.

15.
Environ Sci Pollut Res Int ; 31(15): 22576-22587, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38411912

RESUMEN

Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.


Asunto(s)
Brassica , Microbiota , Contaminantes del Suelo , Cadmio/análisis , Zea mays/metabolismo , Peróxido de Hidrógeno/metabolismo , Brassica/metabolismo , Suelo , Contaminantes del Suelo/análisis
16.
Plant Physiol Biochem ; 207: 108401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38301327

RESUMEN

The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.


Asunto(s)
Brassica , Contaminantes del Suelo , Pectinas/metabolismo , Cadmio/metabolismo , Aminoácidos/metabolismo , Esterificación , Brassica/genética , Brassica/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
17.
Prostate ; 73(14): 1591-601, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23836514

RESUMEN

BACKGROUND: RNA activation (RNAa) is a small RNA-mediated gene regulation mechanism by which expression of a particular gene can be induced by targeting its promoter using small double-stranded RNA also known as small activating RNA (saRNA). We used saRNA as a molecular tool to examine NKX3-1's role as a tumor suppressor and tested in vitro and in vivo antitumor effects of NKX3-1 induction by saRNA. MATERIALS AND METHODS: NKX3-1 saRNA was transfected into human prostate cancer cells including LNCaP, CWR22R, PC-3, CWR22RV1, DuPro, LAPC4, and DU145. The transfected cells were used for analysis of gene expression by RT-PCR and immunoblotting, proliferation, apoptosis and cell cycle distribution. PC-3 xenograft models were established in immunocompromised mice and treated with NKX3-1 saRNA. RESULTS: NKX3-1 saRNA induced NKX3-1 expression in different prostate cancer cell lines, resulting in inhibited cell proliferation and survival, cell cycle arrest and apoptotic cell death. These effects were partly mediated by NKX3-1's regulation of several downstream genes including the upregulation of p21 and p27, and the inhibition of VEGFC expression. Treatment of mouse xenograft prostate tumors with intratumoral delivery of NKX3-1 saRNA formulated in lipid nanoparticles significantly inhibited tumor growth and prolonged animal survival. CONCLUSIONS: By revealing several important target genes of NKX3-1, our findings corroborated NKX3-1's role as a tumor suppressor gene through direct regulation of the cell cycle and growth/survival pathways. This study also validated the therapeutic potential of saRNA for the treatment of prostate cancer via targeted activation of tumor suppressor genes.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Proteínas de Homeodominio , Neoplasias de la Próstata , ARN Bicatenario , Factores de Transcripción , Animales , Línea Celular Tumoral , Fenómenos Fisiológicos Celulares/genética , Genes Supresores de Tumor , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/farmacología , Humanos , Masculino , Ratones , Modelos Animales , Plásmidos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , ARN Bicatenario/genética , ARN Bicatenario/farmacología , Factores de Transcripción/genética , Factores de Transcripción/farmacología , Activación Transcripcional/efectos de los fármacos , Transfección , Trasplante Heterólogo , Resultado del Tratamiento
18.
J Urol ; 190(2): 790-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23523927

RESUMEN

PURPOSE: Promoter targeted saRNAs mediate sequence specific up-regulation of gene expression. We explored the therapeutic effect of RNA activation mediated iNOS gene activation on improving erectile function in a rat model of diabetes mellitus. MATERIALS AND METHODS: An optimal saRNA sequence specific for iNOS promoter was cloned into an adenoviral vector, resulting in AdU6/shiNOS and AdU6/shControl. The corresponding viruses were used to transduce cultured rat cavernous smooth muscle cells. Streptozotocin induced diabetes models were established in rats and used to test the effects of intracavernous delivery of iNOS saRNA viruses on erectile function. iNOS expression in the cavernous smooth muscle cells or penile tissue of treated rats was assessed by reverse transcriptase-polymerase chain reaction and Western blot. Cyclic guanosine monophosphate was analyzed by enzyme-linked immunosorbent assay. Intracavernous pressure in response to cavernous nerve stimulation was measured using a data acquisition system on post-injection days 1, 3, 5, 7, 10 and 14. RESULTS: Adenovirus mediated expression of iNOS saRNA caused sustained up-regulation of iNOS in cavernous smooth muscle cells. Intracavernous injection of AdU6/shiNOS activated iNOS expression in vivo and significantly increased peak intracavernous pressure in streptozotocin induced diabetic rats via nitric oxide/intracellular cyclic guanosine monophosphate activation. CONCLUSIONS: Results show that saRNA mediated iNOS over expression in the penis can restore erectile function in streptozocin diabetic rats via the nitric oxide-cyclic guanosine monophosphate pathway.


Asunto(s)
Diabetes Mellitus Experimental , Óxido Nítrico Sintasa de Tipo II/metabolismo , Erección Peniana/fisiología , ARN/farmacología , Adenoviridae , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , GMP Cíclico/fisiología , Ensayo de Inmunoadsorción Enzimática , Masculino , Músculo Liso/fisiología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transducción de Señal , Regulación hacia Arriba
19.
Biochem J ; 443(3): 821-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22339500

RESUMEN

RNAa (RNA activation) is a mechanism by which small dsRNA (double-stranded RNA), termed saRNA (small activating RNA), target promoter sequences to induce gene expression. This technique represents a novel approach to gene overexpression without the use of exogenous DNA. In the present study, we investigated whether RNAa can modulate expression of the development-related gene NANOG and manipulate cell fate. Using a lentivirus-based reporter system as a screening tool, we identified synthetic saRNAs that stimulate NANOG expression in human NCCIT embryonic carcinoma cells. Mismatch mutations to saRNA duplexes define sequence requirement for gene activation. Functional analysis of NANOG induction reveals saRNA treatment predictably modulates the expression of several known downstream target genes, including FOXH1 (forkhead box H1), REST (RE1-silencing transcription factor), OCT4 (octamer-binding protein 4) and REX1 (reduced expression protein 1). Treatment with RA (retinoic acid) triggers NCCIT cell differentiation, reducing NANOG and OCT4 expression and up-regulating several neural markers [i.e. ASCL1 (achaete-scute complex homologue 1), NEUROD1 (neuronal differentiation 1) and PAX6 (paired box 6)]. However, co-treatment with saRNA antagonizes NANOG down-regulation and RA-induced differentiation. Ectopic overexpression of NANOG via lentiviral transduction further recapitulates saRNA results, providing proof-of-concept that RNAa may be utilized to activate development-related genes and manipulate cell fate.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas , ARN/genética , Tretinoina/farmacología , Humanos , Proteína Homeótica Nanog
20.
Int J Urol ; 20(4): 362-71, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23163774

RESUMEN

Prostate cancer is a leading cause of cancer deaths in men worldwide. Management of the disease has remained a great challenge and even more so is the aggressive advanced stage with castration-resistant behavior. The mechanisms and timing of development of castration-resistant prostate cancer are unclear and remain debatable. Progression to castration-resistant prostate cancer is undoubtedly multifactorial, with a number of molecular-genetic aberrations implicated. However, a key question that remains unanswered is: when in the evolution of prostate cancer do the changes that confer castration resistance occur? Earlier attempts to address this question led to two proposed models: the "adaptation" and the "clonal selection" models. Although the prevailing hypothesis is the adaptation model, there is recent evidence in favor of the clonal selection model. Clarification of the model development of castration-resistant prostate cancer might significantly alter our diagnostic and therapeutic strategies, and potentially lead to improved outcome of management of this daunting condition. Here we review existing knowledge and current research findings addressing the timing of events in the course of prostate cancer progression to castration-resistant prostate cancer.


Asunto(s)
Selección Clonal Mediada por Antígenos , Orquiectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Animales , Progresión de la Enfermedad , Epigénesis Genética/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA