Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889048

RESUMEN

Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, Systemic Acquired Resistance Deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, four uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is inter-changeable with CBP60b, suggesting clade-specific functionalization. We further show that function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii, are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest CBP60b clade transcription factors are functionally conserved in evolution and positively mediate immunity.

2.
Trends Immunol ; 42(8): 723-734, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34256989

RESUMEN

Lymph nodes (LNs), where immune responses are initiated, are organized into distinctive compartments by fibroblastic reticular cells (FRCs). FRCs imprint immune responses by supporting LN architecture, recruiting immune cells, coordinating immune cell crosstalk, and presenting antigens. Recent high-resolution transcriptional and histological analyses have enriched our knowledge of LN FRC genetic and spatial heterogeneities. Here, we summarize updated anatomic, phenotypic, and functional identities of FRC subsets, delve into topological and transcriptional remodeling of FRCs in inflammation, and illustrate the crosstalk between FRCs and immune cells. Discussing FRC functions in immunity and tolerance, we highlight state-of-the-art FRC-based therapeutic approaches for maintaining physiological homeostasis, steering protective immunity, inducing transplantation tolerance, and treating diverse immune-related diseases.


Asunto(s)
Fibroblastos , Ganglios Linfáticos , Homeostasis , Inmunidad
3.
PLoS Genet ; 17(4): e1009505, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886546

RESUMEN

The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.


Asunto(s)
Arabidopsis/genética , Gametogénesis/genética , Desarrollo de la Planta/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Empalme Alternativo/genética , Arabidopsis/crecimiento & desarrollo , Células Germinativas de las Plantas/crecimiento & desarrollo , Mitosis/genética , Proteínas Sensibles a N-Etilmaleimida/genética , Isoformas de Proteínas/genética
4.
BMC Microbiol ; 23(1): 394, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066426

RESUMEN

Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.


Asunto(s)
Tacrolimus , Animales , Ratones , Inmunosupresores/farmacología , Metaboloma , Metabolómica
5.
New Phytol ; 239(5): 1740-1753, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301984

RESUMEN

Pollen tubes have dynamic tubular vacuoles. Functional loss of AP-3, a regulator of one vacuolar trafficking route, reduces pollen tube growth. However, the role of canonical Rab5 GTPases that are responsible for two other vacuolar trafficking routes in Arabidopsis pollen tubes is obscure. By using genomic editing, confocal microscopy, pollen tube growth assays, and transmission electron microscopy, we demonstrate that functional loss of canonical Rab5s in Arabidopsis, RHA1 and ARA7, causes the failure of pollen tubes to grow through style and thus impairs male transmission. Functional loss of canonical Rab5s compromises vacuolar trafficking of tonoplast proteins, vacuolar biogenesis, and turgor regulation. However, rha1;ara7 pollen tubes are comparable to those of wild-type in growing through narrow passages by microfluidic assays. We demonstrate that functional loss of canonical Rab5s compromises endocytic and secretory trafficking at the plasma membrane (PM), whereas the targeting of PM-associated ATPases is largely unaffected. Despite that, rha1;ara7 pollen tubes contain a reduced cytosolic pH and disrupted actin microfilaments, correlating with the mis-targeting of vacuolar ATPases (VHA). These results imply a key role of vacuoles in maintaining cytoplasmic proton homeostasis and in pollen tube penetrative growth through style.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tubo Polínico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Adenosina Trifosfatasas/metabolismo
6.
Immunol Rev ; 292(1): 9-23, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31538349

RESUMEN

Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.


Asunto(s)
Microambiente Celular/inmunología , Tolerancia Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Células del Estroma/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa/inmunología , Animales , Quimiocina CCL19/inmunología , Quimiocina CCL19/metabolismo , Quimiocina CCL21/inmunología , Quimiocina CCL21/metabolismo , Humanos , Ganglios Linfáticos/metabolismo , Células del Estroma/metabolismo , Linfocitos T/metabolismo
7.
Plant Physiol ; 186(3): 1645-1659, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848345

RESUMEN

Plants use a dual defense system to cope with microbial pathogens. The first involves pathogen-associated molecular pattern-triggered immunity which is conferred by membrane receptors, and the second involves effector-triggered immunity (ETI), which is conferred by disease-resistance proteins (nucleotide-binding leucine-rich repeat-containing proteins; NLRs). Calmodulin-Binding Protein 60 (CBP60) family transcription factors are crucial for pathogen defense: CBP60g and Systemic Acquired Resistance Deficient 1 (SARD1) positively regulate immunity, whereas CBP60a negatively regulates immunity. The roles of other Arabidopsis (Arabidopsis thaliana) CBP60s remain unclear. We report that CBP60b positively regulates immunity and is redundant with-yet distinct from-CBP60g and SARD1. By combining chromatin immunoprecipitation-PCRs and luciferase reporter assays, we demonstrate that CBP60b is a transcriptional activator of immunity genes. Surprisingly, CBP60b loss-of-function results in autoimmunity, exhibiting a phenotype similar to that of CBP60b gain-of-function. Mutations at the ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-dependent ETI pathway fully suppressed the defects of CBP60b loss-of-function but not those of CBP60b gain-of-function, suggesting that CBP60b is monitored by NLRs. Functional loss of SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1, an R-gene, partially rescued the phenotype of cbp60b, further supporting that CBP60b is a protein targeted by pathogen effectors, that is, a guardee. Unlike CBP60g and SARD1, CBP60b is constitutively and highly expressed in unchallenged plants. Transcriptional and genetic studies further suggest that CBP60b plays a role redundant with CBP60g and SARD1 in pathogen-induced defense, whereas CBP60b has a distinct role in basal defense, partially via direct regulation of CBP60g and SARD1.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Pseudomonas syringae/patogenicidad
8.
J Integr Plant Biol ; 63(4): 676-694, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32918784

RESUMEN

Gametophyte development is a pre-requisite for plant reproduction and seed yield; therefore, studies of gametophyte development help us understand fundamental biological questions and have potential applications in agriculture. The biogenesis and dynamics of endomembrane compartments are critical for cell survival, and their regulatory mechanisms are just beginning to be revealed. Here, we report that the Arabidopsis thaliana SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) protein YKT61 is essential for both male and female gametogenesis. By using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based genome editing, we demonstrated that male and female gametophytes carrying YKT61 loss-of-function alleles do not survive. Specifically, loss of YKT61 function resulted in the arrest of male gametophytic development at pollen mitosis I and the degeneration of female gametophytes. A three-base-pair deletion in YKT61 in the ykt61-3 mutant resulted in a single-amino acid deletion in the longin domain of YKT61; the resulting mutant protein does not interact with multiple SNAREs and showed substantially reduced membrane association, suggesting that the N-terminal longin domain of YKT61 plays multiple roles in its function. This study demonstrates that Arabidopsis YKT61 is essential for male and female gametogenesis and sets an example for functional characterization of essential genes with the combination of Cas9-mediated editing and expression from a Cas9-resistant transgene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polen/metabolismo , Proteínas R-SNARE/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Polen/genética , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas R-SNARE/genética
9.
J Biol Chem ; 294(16): 6494-6505, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30808710

RESUMEN

Missing in metastasis (MIM), an inverse Bin-Amphiphysin-Rvs (I-BAR) domain protein, promotes endocytosis of C-X-C chemokine receptor 4 (CXCR4) in mammalian cells. In response to the CXCR4 ligand stromal cell-derived factor 1 (SDF-1 or CXCL12), MIM associates with RAS-related GTP-binding protein 7 (RAB7) 30 min after stimulation. However, RAB7's role in MIM function remains undefined. Here we show that RNAi-mediated suppression of RAB7 expression in human HeLa cells has little effect on the binding of MIM to RAB5 and on the recruitment of CXCR4 to early endosomes but effectively abolishes MIM-mediated CXCR4 degradation, chemotactic response, and sorting into late endosomes and lysosomes. To determine whether I-BAR domain proteins interact with RAB7, we examined cells expressing insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein bearing an Src homology 3 (SH3) domain. We observed that both MIM and IRTKS interact with RAB5 at an early response to SDF-1 and that IRTKS binds poorly to RAB7 but strongly to RAB11 at a later time point. Moreover, IRTKS overexpression reduced CXCR4 internalization and enhanced the chemotactic response to SDF-1. Interestingly, deletion of the SH3 domain in IRTKS abolished the IRTKS-RAB11 interaction and promoted CXCR4 degradation. Furthermore, the SH3 domain was required for selective targeting of MIM-IRTKS fusion proteins by both RAB7 and RAB11. Hence, to the best of our knowledge, our results provide first evidence that the SH3 domain is critical in the regulation of specific endocytic pathways by I-BAR domain proteins.


Asunto(s)
Endocitosis , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteolisis , Receptores CXCR4/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Endosomas/genética , Endosomas/metabolismo , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/genética , Receptores CXCR4/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7 , Dominios Homologos src
10.
Am J Transplant ; 20(9): 2343-2355, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32282980

RESUMEN

Myeloid-derived suppressor cells (MDSCs) expand in an inflammatory microenvironment such as cancer and autoimmunity. To study if transplantation induces MDSCs and these cells regulate allograft survival, C57BL/6 donor hearts were transplanted into BALB/c recipients and endogenous MDSCs were characterized. The effects of adoptive transfer of transplant (tx), tumor (tm), and granulocyte-colony stimulating factor (g-csf)-expanded MDSCs or depletion of MDSC were assessed. MDSCs expanded after transplantation (1.7-4.6-fold) in the absence of immunosuppression, homed to allografts, and suppressed proliferation of CD4 T cells in vitro. Tx-MDSCs differed phenotypically from tm-MDSCs and g-csf-MDSCs. Among various surface markers, Rae-1 expression was notably low and TGF-ß receptor II was high in tx-MDSCs when compared to tm-MDSCs and g-csf-MDSCs. Adoptive transfer of these three MDSCs led to differential graft survival: control (6 days), tx-MDSCs (7.5 days), tm-MDSCs (9.5 days), and g-csf-MDSCs (19.5 days). In combination with anti-CD154 mAb, MDSCs synergistically extended graft survival from 40 days (anti-CD154 alone) to 86 days with tm-MDSCs and 132 days with g-csf-MDSCs. Early MDSC depletion (day 0 or 20), however, abrogated graft survival, but late depletion (day 25) did not. In conclusion, MDSCs expanded following transplantation, migrated to cardiac allografts, prolonged graft survival, and were synergistic with anti-CD154 mAb.


Asunto(s)
Trasplante de Corazón , Células Supresoras de Origen Mieloide , Animales , Supervivencia de Injerto , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Donantes de Tejidos
11.
J Cell Sci ; 130(8): 1475-1485, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28264927

RESUMEN

Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.


Asunto(s)
Quimiocina CXCL12/metabolismo , Regulación hacia Abajo , Proteínas de Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Animales , Endocitosis/genética , Endosomas/metabolismo , Células HeLa , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/inmunología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Unión Proteica , Transporte de Proteínas , Vesículas Transportadoras/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/metabolismo
12.
Biochem Biophys Res Commun ; 479(4): 787-792, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27693783

RESUMEN

The family of inverse BAR (I-BAR) domain proteins participates in a range of cellular processes associated with membrane dynamics and consists of five distinct members. Three of the I-BAR proteins, including insulin receptor tyrosine kinase substrate (IRTKS), contain an SH3 domain near their C-termini. Yet, the function of the SH3 domain of IRTKS remains uncharacterized. Here we report that in contrast to MIM, which is a prototype of I-BAR proteins and does not contain an SH3 domain, IRTKS promoted serum-induced cell migration along with enhanced phosphorylation of mitogen activated kinases Erk1/2 and p38, and activation of small GTPases Rac1 and Cdc42. In addition, cells overexpressing IRTKS exhibited an increased polarity characterized by elongated cytoplasm and extensive lamellipodia at leading edges. However, a mutant with deletion of the SH3 domain attenuated both cellular motility and p38 phosphorylation but had little effect on Erk1/2 phosphorylation. Also, a chimeric mutant in which the N-terminal portion of MIM is fused with the C-terminal IRTKS, including the SH3 domain, was able to promote chemotactic response to serum and cellular polarity. In contrast, a chimeric mutant in which the N-terminal IRTKS is fused with the C-terminal MIM failed to do so. Furthermore, treatment of cells with SB203580, a selective inhibitor of p38, also neutralized the effect of IRTKS on cell migration. These data indicate that the SH3 domain distinguishes the function of IRTKS in promoting cell migration and inducing signal transduction from those of SH3-less I-BAR proteins.


Asunto(s)
Quimiotaxis/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas de Neoplasias/fisiología , Animales , Movimiento Celular/fisiología , Forma de la Célula/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Dominios Homologos src/genética , Dominios Homologos src/fisiología
13.
Bioorg Med Chem ; 23(4): 657-67, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25614116

RESUMEN

A series of phenoxybutanoic acid derivatives were synthesized and tested for their antagonistic activity on the contraction of the rat thoracic aortic ring induced by endothelin-1. Preliminary screening results showed that 6e and 6g with benzoheterocycles demonstrated significant antagonistic activities when compared to the reference compound BQ123. The results from additional assays for the binding affinity and selectivity for endothelin receptors showed that 6e was a selective ETA antagonist with a nanomolar IC50. Moreover, 6e was effective in relieving hypoxia-induced pulmonary arterial hypertension and right ventricular weight ratio. Therefore, 6e may have potential for further development as a therapeutic agent for the treatment of cardiovascular diseases.


Asunto(s)
Antihipertensivos/química , Antihipertensivos/farmacología , Butiratos/química , Butiratos/farmacología , Antagonistas de los Receptores de Endotelina/química , Antagonistas de los Receptores de Endotelina/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/fisiología , Descubrimiento de Drogas , Modelos Moleculares , Ratas , Ratas Sprague-Dawley , Receptores de Endotelina/metabolismo , Relación Estructura-Actividad
14.
Bioorg Med Chem ; 23(13): 3457-71, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25953722

RESUMEN

In our study, three series of hydroxamate, 2-aminobenzamide, and trifluoromethyl ketone analogues have been designed and synthesized. The synthesized compounds were investigated for their in vitro antiproliferative activities using the MTT-based assay against three human cancer cell lines including A549, NCI-H661, and U937. Most analogues exhibited higher antiproliferative activities against human acute myeloid leukemia cell U937 than the other two human lung cancer cell lines. Furthermore, the compounds were examined against HDAC1, 2, and 8 isoforms. Docking study of compounds 6h, 9b, and 10a suggested that they might bind tightly to the binding pocket of HDAC2 and/or HDAC8. The results suggest that these compounds might have potential as lead compounds for the development of anti-tumor drugs with HDACs inhibitory activities.


Asunto(s)
Antineoplásicos/síntesis química , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/síntesis química , Ácidos Hidroxámicos/química , Oxadiazoles/síntesis química , Proteínas Represoras/antagonistas & inhibidores , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Concentración 50 Inhibidora , Cetonas/química , Simulación del Acoplamiento Molecular , Oxadiazoles/farmacología , Unión Proteica , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Vorinostat , ortoaminobenzoatos/química
15.
Biotechnol Lett ; 36(6): 1203-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24563309

RESUMEN

IR-789, a novel near-infrared fluorescent probe, was designed, synthesized, and applied to living cells. The probe exhibited better response fluorescence characteristics than the only FDA-approved agent, indocyanine green. Cell experiments showed that the probe had high affinity and without apparent cytotoxicity. Fluorescent image experiments in living MCF-7 cells (human breast adenocarcinoma cell line) further demonstrated the potential applications of the probe in biological systems. The probe effectively prevented the influence of autofluorescence and native cellular species in biological systems. It also exhibited high sensitivity, good photostability, and excellent cell membrane permeability.


Asunto(s)
Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Células MCF-7/fisiología , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Humanos
16.
Transplantation ; 108(7): e91-e105, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587506

RESUMEN

BACKGROUND: Despite ongoing improvements to regimens preventing allograft rejection, most cardiac and other organ grafts eventually succumb to chronic vasculopathy, interstitial fibrosis, or endothelial changes, and eventually graft failure. The events leading to chronic rejection are still poorly understood and the gut microbiota is a known driving force in immune dysfunction. We previously showed that gut microbiota dysbiosis profoundly influences the outcome of vascularized cardiac allografts and subsequently identified biomarker species associated with these differential graft outcomes. METHODS: In this study, we further detailed the multifaceted immunomodulatory properties of protolerogenic and proinflammatory bacterial species over time, using our clinically relevant model of allogenic heart transplantation. RESULTS: In addition to tracing longitudinal changes in the recipient gut microbiome over time, we observed that Bifidobacterium pseudolongum induced an early anti-inflammatory phenotype within 7 d, whereas Desulfovibrio desulfuricans resulted in a proinflammatory phenotype, defined by alterations in leukocyte distribution and lymph node (LN) structure. Indeed, in vitro results showed that B pseudolongum and D desulfuricans acted directly on primary innate immune cells. However, by 40 d after treatment, these 2 bacterial strains were associated with mixed effects in their impact on LN architecture and immune cell composition and loss of colonization within gut microbiota, despite protection of allografts from inflammation with B pseudolongum treatment. CONCLUSIONS: These dynamic effects suggest a critical role for early microbiota-triggered immunologic events such as innate immune cell engagement, T-cell differentiation, and LN architectural changes in the subsequent modulation of protolerant versus proinflammatory immune responses in organ transplant recipients.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Rechazo de Injerto , Trasplante de Corazón , Trasplante de Corazón/efectos adversos , Microbioma Gastrointestinal/inmunología , Rechazo de Injerto/inmunología , Rechazo de Injerto/microbiología , Rechazo de Injerto/prevención & control , Animales , Masculino , Factores de Tiempo , Supervivencia de Injerto , Disbiosis , Ratones Endogámicos C57BL , Inmunidad Innata , Inmunomodulación , Fenotipo , Probióticos/uso terapéutico , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/inmunología
17.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329123

RESUMEN

While the function of many leukocytes in transplant biology has been well defined, the role of eosinophils is controversial and remains poorly explored. Conflicting data exist regarding eosinophils' role in alloimmunity. Due to their prevalence in the lung, and their defined role in other pulmonary pathologies such as asthma, we set out to explore the role of eosinophils in the long-term maintenance of the lung allograft. We noted that depletion of eosinophils results in the generation of donor-specific antibodies. Eosinophil depletion increased memory B cell, plasma cell, and antibody-secreting cell differentiation and resulted in de novo generation of follicular germinal centers. Germinal center formation depended on the expansion of CD4+Foxp3-Bcl6+CXCR5+PD-1+ T follicular helper (Tfh) cells, which increase in number after eosinophil depletion. Mechanistically, we demonstrate that eosinophils prevent Tfh cell generation by acting as the dominant source of IFN-γ in an established lung allograft, thus facilitating Th1 rather than Tfh polarization of naive CD4+ T cells. Our data thus describe what we believe is a unique and previously unknown role for eosinophils in maintaining allograft tolerance and suggest that indiscriminate administration of eosinophil-lytic corticosteroids for treatment of acute cellular rejection may inadvertently promote humoral alloimmunity.


Asunto(s)
Eosinófilos , Trasplante de Pulmón , Centro Germinal , Anticuerpos , Trasplante Homólogo , Trasplante de Pulmón/efectos adversos
18.
Sci Rep ; 13(1): 1023, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658194

RESUMEN

The beneficial effects attributed to Bifidobacterium are largely attributed to their immunomodulatory capabilities, which are likely to be species- and even strain-specific. However, their strain-specificity in direct and indirect immune modulation remain largely uncharacterized. We have shown that B. pseudolongum UMB-MBP-01, a murine isolate strain, is capable of suppressing inflammation and reducing fibrosis in vivo. To ascertain the mechanism driving this activity and to determine if it is specific to UMB-MBP-01, we compared it to a porcine tropic strain B. pseudolongum ATCC25526 using a combination of cell culture and in vivo experimentation and comparative genomics approaches. Despite many shared features, we demonstrate that these two strains possess distinct genetic repertoires in carbohydrate assimilation, differential activation signatures and cytokine responses signatures in innate immune cells, and differential effects on lymph node morphology with unique local and systemic leukocyte distribution. Importantly, the administration of each B. pseudolongum strain resulted in major divergence in the structure, composition, and function of gut microbiota. This was accompanied by markedly different changes in intestinal transcriptional activities, suggesting strain-specific modulation of the endogenous gut microbiota as a key to immune modulatory host responses. Our study demonstrated a single probiotic strain can influence local, regional, and systemic immunity through both innate and adaptive pathways in a strain-specific manner. It highlights the importance to investigate both the endogenous gut microbiome and the intestinal responses in response to probiotic supplementation, which underpins the mechanisms through which the probiotic strains drive the strain-specific effect to impact health outcomes.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Ratones , Animales , Porcinos , Bifidobacterium , Intestinos , Inmunidad
19.
Nat Commun ; 14(1): 681, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755035

RESUMEN

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Humanos , Tolerancia Inmunológica , Autoantígenos , Ganglios Linfáticos/patología , Sirolimus
20.
Res Sq ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790403

RESUMEN

Intrinsic metabolism shapes the immune environment associated with immune suppression and tolerance in settings such as organ transplantation and cancer. However, little is known about the metabolic activities in an immunosuppressive environment. In this study, we employed metagenomic, metabolomic, and immunological approaches to profile the early effects of the immunosuppressant drug tacrolimus, antibiotics, or both in gut lumen and circulation using a murine model. Tacrolimus induced rapid and profound alterations in metabolic activities within two days of treatment, prior to alterations in gut microbiota composition and structure. The metabolic profile and gut microbiome after seven days of treatment was distinct from that after two days of treatment, indicating continuous drug effects on both gut microbial ecosystem and host metabolism. The most affected taxonomic groups are Clostriales and Verrucomicrobiae (i.e., Akkermansia muciniphila), and the most affected metabolic pathways included a group of interconnected amino acids, bile acid conjugation, glucose homeostasis, and energy production. Highly correlated metabolic changes were observed between lumen and serum metabolism, supporting their significant interactions. Despite a small sample size, this study explored the largely uncharacterized microbial and metabolic events in an immunosuppressed environment and demonstrated that early changes in metabolic activities can have significant implications that may serve as antecedent biomarkers of immune activation or quiescence. To understand the intricate relationships among gut microbiome, metabolic activities, and immune cells in an immune suppressed environment is a prerequisite for developing strategies to monitor and optimize alloimmune responses that determine transplant outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA