Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 239: 113640, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35597141

RESUMEN

The aim of this study was to investigate the role of selenomethionine (SeMet) in alleviating AFB1 induced intestinal injury by inhibiting intestinal oxidative stress. Forty 35-day-old rabbits were divided randomly into 4 groups (control group, AFB1 group, 0.2 mg/kg Se + AFB1 group, 0.4 mg/kg Se + AFB1 group). From the first day of the experiment, the two treatment groups were fed 0.2 mg/kg SeMet or 0.4 mg/kg SeMet daily for 21 days. On the 17th day, all rabbits in the model group and the two treatment groups were given intragastric AFB1 daily for 5 days. The ADG, ADFI and FCR of the rabbits were examined. Rabbit jejunum tissue was collected for hematoxylin- eosin staining (HE), PCNA detection, immunofluorescence and WB. Intestinal tissue IL-1ß, IL-6 and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). The results showed that the production performance was decreased, the levels of ROS and MDA were increased in intestinal tissues, the activity of antioxidant enzymes was decreased and the expression levels of Nrf2 and HO-1 were decreased in AFB1-exposed rabbits. In addition, AFB1 induces an inflammatory response in the jejunum and promotes the expression of TNF-α, IL-6 and IL-1ß. SeMet pretreatment significantly improved the performance of the rabbits, alleviated intestinal oxidative stress and the inflammatory response. Therefore, we confirmed that SeMet protects against AFB1 induced oxidative damage and improves productivity in rabbits by activating the Nrf2/HO-1 signaling pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Selenometionina , Animales , Conejos , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Sci Rep ; 13(1): 5812, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037844

RESUMEN

Adipose derived stem cells (ADSCs) are popular in regenerative medicine due to their easy availability, low immunogenicity and lack of controversy regarding their ethical debate use. Although ADSCs can repair nerve damage, the oxidative microenvironment of damaged tissue can induce apoptosis of transplanted stem cells, which weakens the therapeutic efficacy of ADSCs. Resveratrol (Res) is a type of natural polyphenol compound that regulates the proliferation, senescence and differentiation of stem cells. Therefore, we investigated whether incubation of ADSCs with Res improves their to promote peripheral nerve regeneration. ADSCs were cultured in vitro and treated with H2O2 to establish an apoptosis model. The control, H2O2 and Res groups were set up. The cell survival rate was detected by the CCK-8 method. The TUNEL assay was used to detect the apoptosis of the cells. qRT‒PCR was used to analyze the expression of apoptosis-related mRNA, and the effect of Res on the proliferation of ADSCs was investigated. In vivo, 40 SD rats were randomly divided into the control, model, ADSCs and ADSC + Res groups, with 13 rats in each group. The sciatic nerve injury rat model was established by the clamp method. Gait was observed on Days 7, 14, 21, and 28. Sciatic nerve regeneration was detected on Day 28. Res had no effect on the proliferation of ADSCs, and the TUNEL assay confirmed that Res pretreatment could significantly improve H2O2-induced apoptosis in ADSCs. Compared with the control group, caspase-3, Bax and Bcl-2 expression levels were significantly increased in the H2O2 group. Compared with the H2O2 group caspase-3 and Bax expression levels were significantly decreased, and Bcl-2 expression levels were significantly increased in ADSCs + Res group. At 4 weeks after surgery, the functional index of the sciatic nerve in the ADSCs + Res group was significantly higher than that in the model group. On Day 28, the average density of the sciatic nerve myelin sheath in the ADSCs + Res group was significantly increased compared with that in the model group, and Nissl staining showed that the number of motor neurons in the spinal cord was significant compared with that in the model group. Compared with the control group, the wet weight ratio of gastrocnemius muscle and muscle fiber area in ADSCs + Res group were significantly increased. Res enhanced the ability of ADSCs to promote sciatic nerve regeneration in rats.


Asunto(s)
Peróxido de Hidrógeno , Nervio Ciático , Ratas , Animales , Ratas Sprague-Dawley , Resveratrol/farmacología , Caspasa 3 , Proteína X Asociada a bcl-2 , Nervio Ciático/lesiones , Células Madre , Regeneración Nerviosa/fisiología , Tejido Adiposo
3.
Int J Endocrinol ; 2022: 5861553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910940

RESUMEN

Background: In the early stage of nerve injury, damaged tissue is cleared by autophagy. ADSCs can promote nerve axon regeneration. However, the microenvironment of the injury was changed, and ADSCs are easily apoptotic after transplantation. Mel plays a role in the apoptosis, proliferation, and differentiation of ADSCs. Therefore, we investigated whether Mel combined with ADSCs promoted peripheral nerve regeneration by enhancing early autophagy of injured nerves. Materials and Methods: SD rats were randomly split into the control group, model group, Mel group, ADSCs group, ADSCs + Mel group, and 3-MA group. On day 7, autophagy was observed and gait was detected on days 7, 14, 21, and 28. On the 28th day, the sciatic nerve of rats' renewal was detected. Results: After 1 w, compare with the model group, the number of autophagosomes and lysosomes and the expressions of protein of LC3-II/LC3-I and Beclin-1 in the ADSCs + Mel group were prominently increased, while the 3-MA group was significantly decreased. After 4 w, the function of the sciatic nerve in ADSCs + Mel was similar to that in the control group. Compared with the model group, the ADSCs + Mel group significantly increased myelin regeneration and the number of motor neurons and reduced gastrocnemius atrophy. Conclusions: It was confirmed that ADSCs combined with Mel could promote sciatic nerve regeneration in rats by changing the early autophagy activity of the injured sciatic nerve.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA