Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Opt Express ; 32(11): 20370-20384, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859150

RESUMEN

The rapid advancement of photonic technologies has facilitated the development of photonic neurons that emulate neuronal functionalities akin to those observed in the human brain. Neuronal bursts frequently occur in behaviors where information is encoded and transmitted. Here, we present the demonstration of the bursting response activated by an artificial photonic neuron. This neuron utilizes a single vertical-cavity surface-emitting laser (VCSEL) and encodes multiple stimuli effectively by varying the spike count during a burst based on the polarization competition in the VCSEL. By virtue of the modulated optical injection in the VCSEL employed to trigger the spiking response, we activate bursts output in the VCSEL with a feedback structure in this scheme. The bursting response activated by the VCSEL-neuron exhibits neural signal characteristics, promising an excitation threshold and the refractory period. Significantly, this marks the inaugural implementation of a controllable integrated encoding scheme predicated on bursts within photonic neurons. There are two remarkable merits; on the one hand, the interspike interval of bursts is distinctly diminished, amounting to merely one twenty-fourth compared to that observed in optoelectronic oscillators. Moreover, the interspike period of bursts is about 70.8% shorter than the period of spikes activated by a VCSEL neuron without optical feedback. Our results may shed light on the analogy between optical and biological neurons and open the door to fast burst encoding-based optical systems with a speed several orders of magnitude faster than their biological counterparts.


Asunto(s)
Rayos Láser , Neuronas , Neuronas/fisiología , Humanos , Potenciales de Acción/fisiología , Retroalimentación , Modelos Neurológicos
2.
Opt Express ; 32(8): 13906-13917, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859349

RESUMEN

Extreme events (EEs) are rare and unpredictable, as have been observed in nature. Up to now, manipulating EEs has remained a challenge. Here, we experimentally observe the enhancement of EEs in a three cascade-coupled semiconductor laser system. Specifically, a continuous-wave optical injection semiconductor laser acts as the chaotic source with rare EEs, which is subsequently injected into a second laser for increasing the number of EEs. Interestingly, we find that the number and region size of EEs can be further enhanced by sequentially injecting into a third laser, i.e., a cascade-injection structure. Our experimental observations are in good agreement with the numerical results, which indicate that EEs can be significantly enhanced in wide injection parameter space due to the cascade-injection effect. Furthermore, our simulations show that the evoluation of the regions with enhanced EEs may be associated with the noise considered.

3.
Opt Lett ; 49(17): 4795-4798, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207966

RESUMEN

Enhancing physical layer encryption in fiber-optic networks remains a challenging yet vital task. In this Letter, we propose a simplified coherent chaotic secure optical communication scheme based on the Kramers-Kronig (KK) receiver. This scheme incorporates a semiconductor laser with a phase-conjugated optical feedback serving as a common chaotic source, and its chaotic output is directly injected into the two slave lasers arranged separately at the transmitter and receiver end to achieve high-quality synchronization of chaotic signals, with a corresponding chaotic bandwidth of 30.6 GHz. By virtue of the common-signal-induced broad chaotic synchronization, a proof-of-principle demonstration is successfully conducted. It involves the secure transmission of a 20 Gbaud 16-level quadrature amplitude modulation (16QAM) signal over a 50 km standard single-mode fiber (SSMF) link. At the receiver end, we deploy a KK receiver to reconstruct the field of the optical signal and hence enable signal compensation and recovery with offline digital signal processing (DSP). This method simplifies device requirements in the current chaotic coherent optical secure communication, offering a cost-effective mode and promising path for advancing physical layer encryption in inter-data center communications.

4.
Chemistry ; : e202402765, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302066

RESUMEN

The emergence of π-magnetism in low-dimensional carbon-based nanostructures, such as nanographenes (NGs), has captured significant attention due to their unique properties and potential applications in spintronics and quantum technologies. Recent advancements in on-surface synthesis under ultra-high vacuum conditions have enabled the atomically precise engineering of these nanostructures, effectively overcoming the challenges posed by their inherent strong chemical reactivity. This review highlights the essential concepts and synthesis methodologies used in studying NGs. It also outlines the remarkable progress made in understanding and controlling their magnetic properties. Advanced characterization techniques, such as scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM), have been instrumental in visualizing and manipulating these nanostructures, which highlighting their critical role in the field. The review underscores the versatility of carbon-based π-magnetic materials and their potential for integration into next-generation electronic devices. It also outlines future research directions aimed at optimizing their synthesis and exploring applications in cutting-edge technologies.

5.
Opt Express ; 31(20): 31853-31869, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859001

RESUMEN

We report on the global dynamics of a free-running vertical-cavity surface-emitting laser (VCSEL) with misalignment between the linear phase and amplitude anisotropies due to the fact that this case might occur in practice caused unintentionally by minor manufacturing variations or design, in virtue of high-resolution phase stability diagrams, where two kinds of self-similar structures are revealed. Of interest is that the Arnold tongue cascades covered by multiple distinct periodicities are discovered for the first time in several scenarios specified in the free-running VCSEL, to the best of our knowledge. Additionally, we also uncover the existence of multistability through the basin of the attraction, as well as the eyes of anti-chaos and periodicity characterized by fractal. The findings may shed new light on interesting polarization dynamics of VCSELs, and also open the possibility to detect the above-mentioned structures experimentally and develop some potential applications.

6.
Opt Express ; 31(6): 9827-9840, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157545

RESUMEN

Photonic microwave generation based on period-one (P1) dynamics of an optically pumped spin-polarized vertical-cavity surface-emitting laser (spin-VCSEL) is investigated numerically. Here, the frequency tunability of the photonic microwave generated from a free-running spin-VCSEL is demonstrated. The results show that the frequency of the photonic microwave signals can be widely tuned (from several gigahertz to hundreds of gigahertz) by changing the birefringence. Furthermore, the frequency of the photonic microwave can be modestly adjusted by introducing an axial magnetic field, although it degrades the microwave linewidth in the edge of Hopf bifurcation. To improve the quality of the photonic microwave, an optical feedback technique is employed in a spin-VCSEL. Under the scenario of single-loop feedback, the microwave linewidth is decreased by enhancing the feedback strength and/or delay time, whereas the phase noise oscillation increases with the increase of the feedback delay time. By adding the dual-loop feedback, the Vernier effect can effectively suppress the side peaks around the central frequency of P1, and simultaneously supports P1 linewidth narrowing and phase noise minimization at long times.

7.
Opt Express ; 31(10): 16178-16191, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157702

RESUMEN

We report on the manipulation of extreme events (EEs) in a slave spin-polarized vertical-cavity surface-emitting laser (spin-VCSEL) subject to chaotic optical injection from a master spin-VCSEL. The master laser is free-running but yielding a chaotic regime with obvious EEs, while the slave laser originally (i.e., without external injection) operates in either continuous-wave (CW), period-one (P1), period-two (P2), or a chaotic state. We systematically investigate the influence of injection parameters, i.e., injection strength and frequency detuning, on the characteristics of EEs. We find that injection parameters can regularly trigger, enhance, or suppress the relative number of EEs in the slave spin-VCSEL, where the large ranges of enhanced vectorial EEs and average intensity of both vectorial and scalar EEs can be achieved with suitable parameter conditions. Moreover, with the help of two-dimensional correlation maps, we confirm that the probability of occurrence of EEs in the slave spin-VCSEL is associated with the injection locking regions, outside which enhanced relative number of EEs regions can be obtained and expanded with augmenting the complexity of the initial dynamic state of the slave spin-VCSEL.

8.
Opt Express ; 31(2): 948-963, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785142

RESUMEN

We propose and numerically demonstrate wideband and high-dimensional chaos signal generation based on optically pumped spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs). Here, we focus on the chaotic characteristics of spin-VCSELs under two scenarios: one is a spin-VCSEL with optical feedback and the other is optical heterodyning the outputs of two free-running spin-VCSELs. Specifically, we systematically investigate the influence of some key parameters on the chaotic properties, i.e., bandwidth, spectral flatness (SF), time delay signature (TDS), correlation dimension (CD), and permutation entropy (PE), and reveal the route to enhance these properties simultaneously. Our simulation results demonstrate for the first time that spin-VCSELs with simple auxiliary configurations allow for chaos generation with desired properties, including effective bandwidth up to 30 GHz and above, no TDS of greater than 0.2, the flatness of 0.75 and above, and the high complexity/dimensionality over a wide range of parameters under both schemes. Therefore, our study may pave the way for potential applications requiring wideband and high-dimensional chaos.

9.
Opt Lett ; 48(11): 2845-2848, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262225

RESUMEN

We report on the occurrence of a non-quantum chiral structure in a free-running vertical-cavity surface-emitting laser (VCSEL) with a small misalignment between birefringence and dichroism. Through high-resolution phase diagrams, we show how oscillations evolve in parameter space for different values of the misalignment. Unlike a previously reported non-quantum chiral dynamic system involving closed rings in parameter space, this work manifests another case, i.e., the chiral structure exists in some open parameter spaces. Furthermore, the possible underlying physical mechanism of the emergence of the structures is offered through bifurcation analysis.

10.
Opt Lett ; 48(24): 6392-6395, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099756

RESUMEN

We propose and experimentally demonstrate a photonic time-delay reservoir computing (TDRC) system with random distributed optical feedback under optical injection. To evaluate the performance, we calculate the memory ability and perform two benchmark tasks, i.e., chaotic time series prediction and nonlinear channel equalization task. Our numerical results show that the proposed TDRC has a superior performance compared with the case with conventional single optical feedback. This is attributed to the fact that the random distributed optical feedback offers multiple external cavity modes, which enhance the nonlinearity of the reservoir laser. Additionally, the experimental result also shows that our proposed TDRC scheme outperforms the computer with single optical feedback in the chaotic time series prediction task. To the best of our knowledge, our work offers a novel path to improve the performance of TDRC by introducing random distributed optical feedback.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA