Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049050

RESUMEN

An effective pathway to achieve the sustainable development of resources and environmental protection is to utilize shale ceramsite (SC), which is processed from shale spoil to produce high-strength lightweight concrete (HSLWC). Furthermore, the urgent demand for better performance of HSLWC has stimulated active research on graphene oxide (GO) in strengthening mechanical properties and durability. This study was an effort to investigate the effect of different contents of GO on HSLWC manufactured from SC. For this purpose, six mixtures containing GO in the range of 0-0.08% (by weight of cement) were systematically designed to test the mechanical properties (compressive strength, flexural strength, and splitting tensile strength), durability (chloride penetration resistance, freezing-thawing resistance, and sulfate attack resistance), and microstructure. The experimental results showed that the optimum amount of 0.05% GO can maximize the compressive strength, flexural strength, and splitting tensile strength by 20.1%, 34.3%, and 24.2%, respectively, and exhibited excellent chloride penetration resistance, freezing-thawing resistance, and sulfate attack resistance. Note that when the addition of GO was relatively high, the performance improvement in HSLWC as attenuated instead. Therefore, based on the comprehensive analysis of microstructure, the optimal addition level of GO to achieve the best mechanical properties and durability of HSLWC is considered to be 0.05%. These findings can provide a new method for the use of SC in engineering.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110991

RESUMEN

The excellent performance of graphene oxide (GO) in terms of mechanical properties and durability has stimulated its application potential in high-strength lightweight concrete (HSLWC). However, more attention needs to be paid to the long-term drying shrinkage of HSLWC. This work aims to investigate the compressive strength and drying shrinkage behavior of HSLWC incorporating low GO content (0.00-0.05%), focusing on the prediction and mechanism of drying shrinkage. Results indicate the following: (1) GO can acceptably reduce slump and significantly increase specific strength by 18.6%. (2) Drying shrinkage increased by 8.6% with the addition of GO. A modified ACI209 model with a GO content factor was demonstrated to have high accuracy based on the comparison of typical prediction models. (3) GO not only refines the pores but also forms flower-like crystals, which results in the increased drying shrinkage of HSLWC. These findings provide support for the prevention of cracking in HSLWC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA