Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(13): 9150-9160, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34128639

RESUMEN

This paper presents an advanced oxidation process (AOP) of peracetic acid (PAA) and ruthenium(III) (Ru(III)) to oxidize micropollutants in water. Studies of PAA-Ru(III) oxidation of sulfamethoxazole (SMX), a sulfonamide antibiotic, in 0.5-20.0 mM phosphate solution at different pH values (5.0-9.0) showed an optimum pH of 7.0 with a complete transformation of SMX in 2.0 min. At pH 7.0, other metal ions (i.e., Fe(II), Fe(III), Mn(II), Mn(III), Co(II), Cu(II), and Ni(II)) in 10 mM phosphate could activate PAA to oxidize SMX only up to 20%. The PAA-Ru(III) oxidation process was also unaffected by the presence of chloride and carbonate ions in solution. Electron paramagnetic resonance (EPR) measurements and quenching experiments showed the dominant involvement of the acetyl(per)oxyl radicals (i.e., CH3C(O)O• and CH3C(O)OO•) for degrading SMX in the PAA-Ru(III) oxidation process. The transformation pathways of SMX by PAA-Ru(III) were proposed based on the identified intermediates. Tests with other pharmaceuticals demonstrated that the PAA-Ru(III) oxidation system could remove efficiently a wide range of pharmaceuticals (9 compounds) in the presence of phosphate ions in 2.0 min at neutral pH. The knowledge gained herein on the effective role of Ru(III) to activate PAA to oxidize micropollutants may aid in developing Ru(III)-containing catalysts for PAA-based AOPs.


Asunto(s)
Rutenio , Contaminantes Químicos del Agua , Compuestos Férricos , Peróxido de Hidrógeno , Oxidación-Reducción , Ácido Peracético , Agua
2.
Sci Total Environ ; 905: 167249, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37739086

RESUMEN

Fosfomycin (FOS) as a widely used antibiotic has been found in abundance throughout the environment, but little effort has been devoted to its treatment. In this study, we systemically looked into the degradation of FOS by ultraviolet-activated persulfate (UV/PS) in aqueous solutions. Our findings demonstrated that FOS can be degraded efficiently under the UV/PS, e.g., >90 % of FOS was degraded with 19,200 mJ cm-2 of UV irradiance and 20 µM of PS. HO was the dominant radical responsible for FOS degradation. FOS degradation increased as PS dosage increased, and higher degradation efficiency was observed at neutral pH. Natural water constitutes either promoted (e.g., Cu2+, Fe3+, and SO42-) or inhibited (e.g., humic acid, HCO3-, and CO32-) FOS degradation to varying degrees. Hydroxyl substitution, CP bond cleavage, and coupling reactions were the major degradation pathways for FOS degradation. Finally, the toxicity evaluation revealed that FOS was toxic to E. coli and S. aureus, but the toxicity of the intermediate products of FOS to E. coli and S. aureus rapidly decreased over time after UV/PS treatment. Therefore, these findings provided a fundamental understanding of the transformation process of FOS and supplied useful information for the environmental elimination of FOS contamination and its toxicity.


Asunto(s)
Fosfomicina , Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Escherichia coli , Staphylococcus aureus , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Cinética , Rayos Ultravioleta , Agua , Sulfatos/química
3.
J Hazard Mater ; 436: 129171, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605504

RESUMEN

Graphitic carbon nitride (g-C3N4) is a promising candidate for photocatalysis, but exhibits moderate activity due to strongly bound excitons and sluggish charge migration. The dissociation of excitons to free electrons and holes is considered an effective strategy to enhance photocatalytic activity. Herein, a novel boron nitride quantum dots (BNQDs) modified P-doped g-C3N4 photocatalyst (BQPN) was successfully prepared by thermal polymerization method. Photoluminescence techniques and photoelectrochemical tests demonstrated that the introduction of P atoms and BNQDs promoted the dissociation of excitons and the migration of photogenerated carriers. Specifically, theoretical calculations revealed that P substitutions were the sites of pooled electrons, while BNQDs were the excellent photogenerated hole extractors. Accordingly, compared with g-C3N4, the BQPN showed improved performance in degrading four non-steroidal anti-inflammatory drugs (NSAIDs) under visible light irradiation. This work not only establishes an in-depth understanding of excitonic regulation in g-C3N4, but also offers a promising photocatalytic technology for environmental remediation.


Asunto(s)
Restauración y Remediación Ambiental , Grafito , Catálisis , Compuestos de Nitrógeno
4.
J Hazard Mater ; 412: 125147, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33517052

RESUMEN

Bismuth oxyiodide (BiOI) has garnered intense attention in the field of photocatalysis for environmental remediation; however, it suffers from a high electron-hole recombination rate. In this study, for the first time, we report on a facile strategy for the creation of oxygen vacancies in BiOI via strontium (Sr2+) doping. The as-prepared 0.45-SrBiOI demonstrated significantly enhanced photocatalytic degradation of indometacin under visible light exposure, which was almost 10 folds higher than pristine BiOI. This augmented photocatalytic performance was ascribed to the accelerated separation of charge carriers by oxygen vacancies, as well as Sr ion trapping electrons. Reactive species determination experiments revealed that O2▪-, 1O2, and h+ were the dominant active species. Finally, potential indometacin degradation pathways were proposed based on the identification of degradation by-products and theoretical calculations. This study offers new perspectives for the synthesis of highly efficient and cost effective BiOI-based photocatalysts, and provides a promising strategy toward advanced environmental remediation.

5.
J Hazard Mater ; 401: 123257, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32659572

RESUMEN

As an emerging carbon nanomaterial, carbon dots (CDs) have superior prospects for applications in the area of photocatalysis due to their unique optical and electronic properties. In this study, a novel CDs modified g-C3N4/SnO2 photocatalyst (CDs/g-C3N4/ SnO2) was successfully synthesized by the thermal polymerization. Under visible light irradiation, the resulting CDs/g-C3N4/SnO2 photocatalyst exhibited excellent photocatalytic activity for the degradation of indomethacin (IDM). It was demonstrated that a 0.5 % loading content of CDs led to the highest IDM degradation rate, which was 5.62 times higher than that of pristine g-C3N4. This improved photocatalytic activity might have been attributed to the unique up-conversion photoluminescence (PL) properties and efficient charge separation capacities of the CDs. Moreover, the combination of g-C3N4 with SnO2 improved the separation of photoinduced carriers and augmented the specific surface area. Reactive species (RSs) scavenging experiments and electron spin resonance (ESR) revealed that superoxide radical anions (O2·-) and photogenerated holes (h+) played critical roles during the photocatalytic process. The results of the detection of H2O2 and ESR confirmed that CDs/g-C3N4/ SnO2 was a Z-scheme heterojunction photocatalyst. Further, HRAM LC-MS/MS was employed to identify the byproducts of IDM, and the major IDM degradation pathways of the CDs/g-C3N4/SnO2 photocatalyst were proposed. This study provides new ideas for the design of novel CDs modified photocatalysts for environmental remediation.

6.
J Hazard Mater ; 384: 121435, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31629594

RESUMEN

Fe-doped g-C3N4 / graphene (rGO) composites were investigated as catalysts for the activation of peroxymonosulfate (PMS) to degrade Trimethoprim (TMP) under visible light irradiation. The rapid recombination of photogenerated electron-hole pairs in g-C3N4 may be suppressed by doping with Fe and incorporating rGO. The TMP degradation efficiency using 0.2% Fe-g-C3N4/2 wt% rGO/PMS was 3.8 times than that of g-C3N4/PMS. The degradation efficiency of TMP increased with higher catalyst dosages and PMS concentrations. Acidic condition (pH = 3) was observed to significantly enhance the TMP degradation efficiency from 61.4% at pH = 6 to nearly 100%. By quenching experiments and electron spin resonance (ESR), O2- was found to play an important role for the activation of PMS to accelerate the generation of reactive radicals for the TMP degradation. A total of 8 intermediates derived from hydroxylation, demethoxylation and carbonylation were identified through theoretical calculations and the HRAM/LC-MS-MS technique, and transformation pathways of TMP oxidation were proposed. TOC removal rate of TMP increased as reaction time was prolonged. Acute toxicity estimation by quantitative structure-active relationship analysis indicated that most of the less toxic intermediates were generated. The aim of this study was to elucidate and validate the functionality of a promising polymeric catalyst for the environmental remediation of organic contaminants.

7.
J Hazard Mater ; 386: 121634, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31740315

RESUMEN

Anatase TiO2 nanoparticles coated with P and O co-doped g-C3N4 were prepared via a single-step procedure. The resulting POCN/anatase TiO2 demonstrated remarkable performance in the degradation of enrofloxacin (ENFX). The photocatalytic activity of this heterojunction was 28.9 and 3.71 times better than that of the CN and anatase TiO2, respectively. The microtopography of the POCN/anatase TiO2 was revealed in this study. Co-doping with P and O increased the visible light adsorption capacity of the g-C3N4, whereas the anatase TiO2 nanoparticles enhanced the adsorption properties of the ENFX and the separation of the photoinduced carriers of the POCN/anatase TiO2. The O2·- and h+ were the main reactive oxidative species in the photocatalytic degradation of ENFX. The results of the detection of H2O2 and ESR confirmed that POCN/anatase TiO2 was a type Z-scheme photocatalyst. Finally, the ENFX degradation pathways were estimated through the detection of by-products.


Asunto(s)
Antibacterianos/química , Enrofloxacina/química , Luz , Nanopartículas del Metal/química , Nitrilos/química , Oxígeno/química , Procesos Fotoquímicos , Titanio/química , Catálisis
8.
J Hazard Mater ; 392: 122355, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32105960

RESUMEN

As a metal-free photocatalyst, the photocatalytic activity of graphitic carbon nitride (g-C3N4) remains restricted due to an insufficient visible-light absorption capacity, the rapid recombination of photoinduced carriers, and low surface area. Consequently, P-doped g-C3N4 (PCN) was successfully prepared via a single -step thermal polymerization technique using phytic acid biomass and urea, which exhibited remarkable photocatalytic activity for the degradation of indometacin (IDM). The IDM degradation rate was 7.1 times greater than that of pristine g-C3N4 (CN). Furthermore, Ag2WO4 was loaded onto the surface of the PCN, which formed a Z-scheme heterostructure that promoted the separation of photogenerated carriers. According to analyses of the chemical binding states of PCN, P atoms replaced carbon atoms in the CN framework. According to electron localization function analysis, the low ELF values of P-N facilitated the transfer of photoelectrons. The results of active species scavenging experiments confirmed that superoxide radicals were the primary active species in the photocatalytic degradation system. Finally, the photocatalytic degradation pathways of IDM were predicted through the identification of by-products and IDM reaction sites.

9.
Chemosphere ; 227: 142-150, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30986596

RESUMEN

The photochemical degradation of the pharmaceuticals and personal care products (PPCPs) has attracted increasing attention. In this study, a deep inspection of the photolysis mechanisms of naproxen and its photoproducts has been performed by employing experimental and theoretical methods. Contributions of different reactive oxygen species (ROS, such as OH, 1O2, and O2-) in the photolysis reaction also have been clarified. Based on the detected intermediates and DFT calculations, several photodegradation pathways of naproxen and its photoproducts have been proved. Furthermore, the deprotonated form of naproxen has been confirmed to be more reactive than the protonated one, and the lowest triplet state of naproxen is the reactive state. The decarboxylation mechanism of naproxen has been fully discussed. Meanwhile, the free energy barriers of OH-induced photolysis reactions (ΔG‡eff(1a) = 7.6 kcal mol-1, ΔG‡eff(4a) = 7.0 kcal mol-1) are much lower than the free energy barriers induced by O2- and 1O2. It proves that OH is the most favourable one among the three ROS. The similar inhabition rates and free energy barriers of reactions induced by O2- and 1O2, respectively, have demonstrated that O2- and 1O2 equally contribute to the degradation. Additionally, the computational results are coincident with the observed experimental findings. Hence, this work has verified a part of naproxen photodegradation mechanism under UV irradiation and brought about a rational way to investigate contributions of different ROS in the complex photochemical system of PPCPs.


Asunto(s)
Naproxeno/química , Fotólisis , Contaminantes Químicos del Agua/química , Especies Reactivas de Oxígeno/química , Rayos Ultravioleta
10.
Sci Total Environ ; 690: 878-890, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302552

RESUMEN

Contamination with ß-blockers such as propranolol (PRO) poses a potential threat to human health and ecological system. The present study investigated the kinetics and mechanisms of PRO degradation by UV-activated persulfate (UV/PS) oxidation. Here, the experimental results showed that the degradation of PRO followed pseudo-first-order reaction kinetics, the degradation rate constant (kobs) was increased dramatically with increasing PS dosage or decreasing initial PRO concentration. And increasing the initial solution pH could also enhance the degradation efficiency of PRO. Radical scavenging experiments demonstrated that the main radical species was sulfate radicals (SO4•-), with hydroxyl radicals (HO·) playing a less important role. Meanwhile, the second-order rate constants of PRO degradation with SO4•- and HO· were determined to be 1.94 × 1010 M-1 s-1 and 6.77 × 109 M-1 s-1, respectively. In addition, the presence of natural organic matter (NOM) and nitrate anion (NO3-) showed inhibitory effect on PRO degradation, whereas bicarbonate anion (HCO3-) and chlorine anion (Cl-) greatly enhanced the degradation of PRO. Moreover, the transformation products of PRO were identified by applying ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) technique. Molecular orbital calculations were used to estimate the reaction site of PRO with radicals, simultaneously. Hence, the transformation pathways including hydroxylation, dehydration, naphthalene ring opening, and the cleavage of aldehyde groups were proposed. This work enriches the mechanism of PRO degradation under UV/PS system on the basis of results obtained by experimental characterization and Gaussian theoretical calculation.

11.
Chemosphere ; 227: 198-206, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30986602

RESUMEN

In this study, the objective was mainly focusing on the mechanism investigation of ciprofloxacin (CIP) degradation by photocatalytic ozonation process which carried out by ozone and TiO2 with a low content of carbon-dots (CDs) under simulated sunlight irradiation. The physicochemical properties of the prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM) X-ray photoelectron spectroscopy (XPS) and zeta potential. Comprehensive investigation has proven the process to be efficient in the removal of CIP with high yield of reactive species (OH, O2-, h+, etc.). Kinetic model on pH investigation found out a repulsive force between the photocatalysts and CIP intensified with the increasing pH, so did the production rate of hydroxyl radicals (OH), while eventually reached a balance and achieved a maximum degradation rate. The results indicated that the enhancement mechanism was triggered by the photoexcited electron accumulated on CDs and transferred by ozone, resulting in the continuous generation of h+, O3- and O2-. Possible photocatalytic ozonation degradation pathways of CIP were proposed according to the identifications of intermediates using high-resolution accurate-mass spectrometry (HRAM) LC-MS/MS.


Asunto(s)
Ciprofloxacina/química , Restauración y Remediación Ambiental , Radicales Libres/química , Ozono/química , Puntos Cuánticos/química , Luz Solar , Antibacterianos/química , Carbono/química , Catálisis , Cinética , Titanio/química , Contaminantes Químicos del Agua/química
12.
Chemosphere ; 216: 341-351, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30384303

RESUMEN

In recent years, how to effectively remove emerging organic pollutants in water bodies has been studied extensively, especially in the actual complex water environment. In the present study, an effective wastewater treatment system that combined photocatalysis and an oxidizing agent was investigated. Specifically, visible-light driven reduced graphene oxide (RGO)/TiO2 composites were prepared, and peroxodisulfate (PDS) was used as electron acceptor to accelerate the photocatalytic activity of this material. The vis-RGO/TiO2/PDS system exhibited outstanding properties in the degradation of diclofenac (DCF), which was also facilitated by acidic conditions and Cl-. Lake water, tap water, river water and HCO3- decreased the DCF degradation rate, while NO3- affected the system only slightly. Low concentrations of fulvic acid (FA) promoted the degradation of DCF via the generation of excited states, whereas a high concentration of FA inhibited the degradation, which was likely due to the light screening effect. The photocatalytic mechanism revealed that PDS served as an electron acceptor for the promotion of electron-hole pair separation and the generation of additional reactive oxygen species, while the RGO served as an electric conductor. The active substances, h+, OH, 1O2, SO4- and O2- were generated in this system, O2- and h+ played significant roles in the degradation of DCF based electron spin resonance tests and radical quenching results. According to the mass spectrometry results, the amide bond cleavage, dechlorination reaction, hydroxyl addition reaction, and decarboxylation reaction were the primary transformative pathways.


Asunto(s)
Grafito/química , Titanio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Catálisis , Cinética , Contaminantes Químicos del Agua/análisis
13.
Chemosphere ; 212: 1067-1075, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30286536

RESUMEN

The widespread occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) (e.g., Indomethacin) in the ambient environment has attracted growing concerns due to their potential threats to ecosystems and human health. Herein, we investigated the degradation of indomethacin (IM) by thermo-activated peroxydisulfate (PDS). The pseudo first-order rate constant (kobs) of degradation of IM was increased significantly with higher temperatures and PDS doses. Moreover, when the initial pH value was raised from 5 to 9 the IM degradation was initially decreased and then increased. Basic conditions were favorable for the removal of IM in the thermo-activated peroxydisulfate system. A response surface methodology based on the Box-Behnken design (BBD) was successfully employed for the optimization of the thermo-activated peroxydisulfate (PDS) system. The presence of chlorine ions manifested a dual effect on the degradation of IM, while bicarbonate and SRFA (as a NOM model) reduced it. Radical scavenging tests and electron spin resonance (ESR) revealed that the dominant oxidizing species were SO4- and OH at pH 9. Furthermore, the TOC removal efficiency attained 28.8% and the release of Cl-was 38.5% at 60 °C within 24min, while the mineralization rate of IM were 85.5% with the PDS concentration up to 20  mM at 2 h oxidation. To summarize, thermo-activated PDS oxidation is a promising technique for the remediation of IM-contaminated water.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Indometacina/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Antiinflamatorios no Esteroideos , Humanos , Cinética , Oxidación-Reducción
14.
RSC Adv ; 8(44): 24787-24795, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542124

RESUMEN

Trimethoprim (TMP), a typical antibiotic pharmaceutical, has received extensive attention due to its potential biotoxicity. In this study, CuFe2O4, which was used to decorate MWCNTs via a sol-gel combustion synthesis method, was introduced to generate powerful radicals from peroxymonosulfate (PMS) for TMP degradation in an aqueous solution. The results showed that almost 90% of TMP was degraded within 24 min with the addition of 0.6 mM PMS and 0.2 g L-1 CuFe2O4/MWCNTs. The degradation rate was enhanced with the increase in initial PMS doses, catalyst loading and pH. A fairly low leaching of Cu and Fe was observed during the reaction, indicating the high potential recyclability and stability of CuFe2O4/MWCNTs. Electron paramagnetic resonance analysis confirmed that the CuFe2O4/MWCNT-PMS system had the capacity to generate ·OH and SO4˙-, whereas quenching experiments further confirmed that the catalytic reaction was dominated by SO4˙-. A total of 11 intermediate products of TMP was detected via mass spectrometry, and different transformation pathways were further proposed. Overall, this study showed a systematic evaluation regarding the degradation process of TMP by the CuFe2O4/MWCNT-PMS system.

15.
Environ Sci Pollut Res Int ; 22(16): 12585-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25907630

RESUMEN

Here, we evidenced the photo-induced degradation of mefenamic acid, a nonsteroidal anti-inflammatory drug, through the 254-nm light excitation of nitrite. The results demonstrated that the photodegradation of mefenamic acid was enhanced, and the mefenamic acid photodegradation rate significantly increased, from 0.00627 to 0.0350 min(-1) as the nitrite was increased from 0 to 0.5 mmol L(-1). The photodegradation rate increased from 0.0287 to 0.0512 min(-1) as the pH was elevated, from 5.0 to 10.0. The actual second-order rate constant for the reaction of mefenamic acid with ·OH was investigated to 1.079 × 10(10) M(-1) s(-1) according to steady-state ·OH concentration of 3.5 × 10(-14) mmol L(-1) and the contribution to the rate of ·OH of 67.1%. The photoproducts were identified using HPLC/MS/MS, and possible nitrite-induced photodegradation pathways were proposed by hydroxylation, dehydrogenation, hydration, nitrosylation, and ketonized reactions. The toxicity of the phototransformation products was evaluated using the Microtox test, which revealed that the photoproducts were more toxic than mefenamic acid for the generation of nitrosation aromatic compounds.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Luz , Ácido Mefenámico/química , Nitritos/farmacología , Fotólisis/efectos de los fármacos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cromatografía Líquida de Alta Presión , Nitritos/efectos de la radiación , Espectrometría de Masas en Tándem , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA