Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 14: 1177127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346048

RESUMEN

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a demyelinating syndrome of the central nervous system. A tremendous amount of literature on NMOSD has been published. This study aimed to perform a bibliometric analysis of the publications on NMOSD and show its hotspots and development trends. Methods: We used the Web of Science Core Collection as a database and searched the literature published between 2002 and 2022. CiteSpace, VOSviewer, online bibliometric platform, and R-bibliometrix were used to conduct bibliometric analysis and network visualization, including the number of publications, citations, countries/regions, institutions, journals, authors, references, and keywords. Results: A total of 3,057 publications on NMOSD were published in 198 journals by 200 authors at 200 institutions from 93 countries/regions. The United States published the most literature and made great contributions to this field. The Mayo Clinic was the institution with the largest number of publications. The journal with the most publications was Multiple Sclerosis and Related Disorders, and the most co-cited journal was Neurology. The author with the most publications was Fujihara, K., while the most frequently co-cited author was Wingerchuk, DM. The current research hotspots may be focused on "efficacy," "multicenter," "interleukin-6 receptor blockade," "safety," "azathioprine," "tolerance," and "adult". Conclusion: This study was the first bibliometric analysis of publications on the NMOSD field, visualizing its bibliometric characteristics and gaining insight into the direction, hotspots, and development of global NMOSD research, which may provide helpful information for researchers. Future research hotspots might be conducting randomized controlled trials on targeted immunotherapy in the NMOSD field.


Asunto(s)
Neuromielitis Óptica , Humanos , Sistema Nervioso Central , Azatioprina , Bibliometría , Bases de Datos Factuales
2.
J Radiat Res ; 60(1): 7-16, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247656

RESUMEN

Radiation-induced acute intestinal injury after abdominal and pelvic irradiation is a common and serious problem in the clinical setting. Glucagon-like peptide-2 (GLP-2), a 33-amino acid peptide, exerts diverse effects related to the regulation of gastrointestinal growth and function. However, GLP-2 is relatively unstable in vivo. The aim of the present study was to improve GLP-2 stability in vivo and to evaluate its therapeutic effect on acute radiation enteritis. We generated long-lasting intestinal protection peptides by conjugating human GLP-2 (hGLP-2) peptides to polyethyleneglycol (PEG) to produce mPEGylation hGLP-2 (Mono-PEG-hGLP-2) through an enzymatic site-specific transglutamination reaction. Mono-PEG-hGLP-2 synthesized under optimal reaction conditions and separated by one-step ion-exchange chromatography was found to be resistant to degradation in vitro. Pretreatment with Mono-PEG-hGLP-2 reduced the severity of radiation-induced intestinal injury, oxidative stress, and the expression of NF-κB in rats with irradiation-induced acute radiation enteritis. The enhanced biological potency of Mono-PEG-hGLP-2 highlights its potential as a therapeutic agent for intestinal diseases.


Asunto(s)
Enteritis/tratamiento farmacológico , Enteritis/etiología , Péptido 2 Similar al Glucagón/aislamiento & purificación , Péptido 2 Similar al Glucagón/uso terapéutico , Polietilenglicoles/química , Traumatismos por Radiación/complicaciones , Animales , Antioxidantes/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-2/metabolismo , Intestino Delgado/enzimología , Intestino Delgado/patología , Masculino , Malondialdehído/metabolismo , Ratas Sprague-Dawley , Temperatura , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Iran J Pharm Res ; 14(3): 833-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26330871

RESUMEN

The protective effects of Rheum tanguticum polysaccharide 1 (RTP1), which is extracted from the Chinese traditional medicine Rheum tanguticum, on radiation-induced intestinal mucosal injury was investigated. Rat intestinal crypt epithelial cells (IEC-6 cells) and Sprague-Dawley rats were each divided into control, irradiated and RTP1-pretreated irradiated groups. After irradiation, cell survival was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide). assay, and the intracellular reactive oxygen species (ROS) was detected by fluorescent probe method. Apoptosis was observed by acridine orange staining, and cell cycle was analysed by flow cytometry. Histological analysis of the rat intestinal mucosa was conducted by haematoxylin and eosin staining. Irradiation at 8 Gy(Gray) decreased cell survival rate to only 54%, significantly increased intracellular ROS levels and induced apoptosis. RTP1 pretreatment significantly inhibited cell death, reduced the formation of intracellular ROS and partially inhibited apoptosis. Irradiation markedly reduced the height and quantity of rat intestinal villi, but it could be antagonised by RTP1 pretreatment. RTP1 can promote the recovery of intestinal mucosa damage, possibly by inhibiting radiation-induced intestinal epithelial apoptosis and intracellular ROS production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA