Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; : e2403991, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136429

RESUMEN

Acquiring a highly efficient electrocatalyst capable of sustaining prolonged operation under high current density is of paramount importance for the process of electrocatalytic water splitting. Herein, Fe-doped phosphide (Fe-Ni5P4) derived from the NiFc metal-organic framework (NiFc-MOF) (Fc: 1,1'-ferrocene dicarboxylate) shows high catalytic activity for overall water splitting (OWS). Fe-Ni5P4||Fe-Ni5P4 exhibits a low voltage of 1.72 V for OWS at 0.5 A cm-2 and permits stable operation for 2700 h in 1.0 m KOH. Remarkably, Fe-Ni5P4||Fe-Ni5P4 can sustain robust water splitting at an extra-large current density of 1 A cm-2 for 1170 h even in alkaline seawater. Theoretical calculations confirm that Fe doping simultaneously reduces the reaction barriers of coupling and desorption (O*→OOH*, OOH*→O2 *) in the oxygen evolution reaction (OER) and regulates the adsorption strength of the intermediates (H2O*, H*) in the hydrogen evolution reaction (HER), enabling Fe-Ni5P4 to possess excellent dual functional activity. This study offers a valuable reference for the advancement of highly durable electrocatalysts through the regulation derived from coordination frameworks, with significant implications for industrial applications and energy conversion technologies.

2.
Angew Chem Int Ed Engl ; 63(26): e202405553, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38594220

RESUMEN

Oxime ethers are attractive compounds in medicinal scaffolds due to the biological and pharmaceutical properties, however, the crucial and widespread step of industrial oxime formation using explosive hydroxylamine (NH2OH) is insecure and troublesome. Herein, we present a convenient method of oxime ether synthesis in a one-pot tandem electrochemical system using magnesium based metal-organic framework-derived magnesium oxide anchoring in self-supporting carbon nanofiber membrane catalyst (MgO-SCM), the in situ produced NH2OH from nitrogen oxides electrocatalytic reduction coupled with aldehyde to produce 4-cyanobenzaldoxime with a selectivity of 93 % and Faraday efficiency up to 65.1 %, which further reacted with benzyl bromide to directly give oxime ether precipitate with a purity of 97 % by convenient filtering separation. The high efficiency was attributed to the ultrafine MgO nanoparticles in MgO-SCM, effectively inhibiting hydrogen evolution reaction and accelerating the production of NH2OH, which rapidly attacked carbonyl of aldehydes to form oximes, but hardly crossed the hydrogenation barrier of forming amines, thus leading to a high yield of oxime ether when coupling benzyl bromide nucleophilic reaction. This work highlights the importance of kinetic control in complex electrosynthetic organonitrogen system and demonstrates a green and safe alternative method for synthesis of organic nitrogen drug molecules.

3.
Angew Chem Int Ed Engl ; : e202417130, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39344002

RESUMEN

Glycine as one of the most abundant amino acids in human proteins, with extensive applications in both life and industry, is conventionally synthesized through complex procedures or toxic feedstocks. In this study, we present a facile and benign electrochemical pathway for synthesis of glycine through reductive coupling of glyoxylic acid and nitrate over a copper-bismuth bimetal catalyst derived from a metal-organic framework (MOF) array on copper foam (Cu/Bi-C@CF). Remarkably, Cu/Bi-C@CF achieves a fantastic selectivity of 89%, corresponding a high Faraday efficiency of 65.9%. From control experiments, introduction of Bi caused the binding energy of Cu shift to lower state, which leads to a high selectivity towards the formation of key hydroxylamine intermediate rather than ammonia product, facilitating the formation of oxime and providing additional sites for subsequent hydrogenation reaction on the way to glycine. Moreover, the MOF array derivation ensures the effective dispersion of Bi and enhances the stability of Cu/Bi-C@CF. This innovative approach not only presents sustainable pathways for the production of value-added organonitrogen compounds utilizing readily available carbon and nitrogen sources, but also provides novel insights into the design of multistage structural catalysts for sequential reactions.

4.
J Am Chem Soc ; 145(8): 4659-4666, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791392

RESUMEN

Ultrasmall metal nanoparticles (NPs) show high catalytic activity in heterogeneous catalysis but are prone to reunion and loss during the catalytic process, resulting in low chemoselectivity and poor efficiency. Herein, a locking effect strategy is proposed to synthesize high-loading and ultrafine metal NPs in metal-organic frameworks (MOFs) for efficient chemoselective catalysis with high stability. Briefly, the MOF ZIF-90 with aldehyde groups cooperating with diamine chains via aldimine condensation was interlocked, which was employed to confine in situ formation of Au NPs, denoted as Au@L-ZIF-90. The optimized Au@La-ZIF-90 has highly dispersed Au NPs (2.60 ± 0.81 nm) with a loading amount around 22 wt % and shows a great performance toward 3-aminophenylacetylene (3-APA) from the selective hydrogenation of 3-nitrophenylacetylene (3-NPA) with a high yield (99%) and excellent durability (over 20 cycles), far superior to contrast catalysts without chains locking and other reported catalysts. In addition, experimental characterization and systematic density functional theory calculations further demonstrate that the locked MOF modulates the charge of Au nanoparticles, making them highly specific for nitro group hydrogenation to obtain 3-APA with high selectivity (99%). Furthermore, this locking effect strategy is also applicable to other metal nanoparticles confined in a variety of MOFs, and all of these catalysts locked with chains show great selectivity (≥90%) of 3-APA. The proposed strategy in this work provides a novel and universal method for precise control of the inherent activity of accessible metal nanoparticles with a programmable MOF microenvironment toward highly specific catalysis.

5.
Angew Chem Int Ed Engl ; 62(45): e202312239, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728507

RESUMEN

Pyridine oximes produced from aldehyde or ketone with hydroxylamine (NH2 OH) have been widely applied in pharmaceutics, enzymatic and sterilization. However, the important raw material NH2 OH exhibits corrosive and unstable properties, leading to substantial energy consumption during storage and transportation. Herein, this work presents a novel method for directly synthesizing highly valuable pyridine oximes using in situ generated NH2 OH from electrocatalytic NO reduction with well-design nanofiber membranes (Al-NFM) derived from NH2 -MIL-53(Al). Particularly, 2-pyridinealdoxime, the precursor of antidote pralidoxime (2-PAM) for nerve agents suffering from scarcity and high cost, was achieved with a Faraday efficiency up to 49.8 % and a yield of 92.1 %, attributing to the high selectivity of NH2 OH production on Al-NFM, further easily reacted with iodomethane to produce 2-PAM. This study proposes a creative approach, having wide universality for synthesizing pyridine and other oximes with a range of functional groups, which not only facilitates the conversion of exhaust gas (NO) and waste water (NO2 - ) into valuable chemicals especially NH2 OH production and in situ utilization through electrochemistry, but also holds significant potential for synthesis of neuro detoxifying drugs to humanity security.

6.
Angew Chem Int Ed Engl ; 62(30): e202306726, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37254227

RESUMEN

The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 µmol h-1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2 OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 - and NO2 - . Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.

7.
Angew Chem Int Ed Engl ; 62(26): e202304007, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37072344

RESUMEN

How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 µmol mgcat -1 is delivered at -0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3 - ). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.


Asunto(s)
Aminoácidos Esenciales , Óxido Nítrico , Aminoácidos , Hidrogenación , Carbono , Gases , Cetoácidos
8.
Zhonghua Nan Ke Xue ; 20(5): 439-41, 2014 May.
Artículo en Zh | MEDLINE | ID: mdl-24908736

RESUMEN

OBJECTIVE: To compare the advantages and disadvantages of the Foley catheter draining method versus the urethral stent plus gastric tube draining method for urine drainage following urethroplasty for hypospadias. METHODS: We retrospectively analyzed the clinical data of 361 cases of hypospadias treated by urethroplasty. After operation, 91 of the cases received urine drainage with the Foley catheter (group A) and 270 with a urethral stent plus a gastric tube (group B). We compared the incidence rates of bladder irritation, fistula, urethral stricture, and urethral diverticulum between the two groups of patients. RESULTS: No statistically significant differences were found between groups A and B in the incidences of bladder irritation (9.89% vs 10.70%, P > 0.05) and urethral diverticulum (1.09% vs 2.22%, P > 0.05). The incidence rate of fistula was markedly higher in group A than in B (20.80% vs 13.30%, P < 0.05), and so was that of urethral stricture (10.90% vs 5.55%, P < 0.05). CONCLUSION: The urethral stent plus gastric tube draining method is more effective than the Foley catheter draining method for urine drainage following urethroplasty.


Asunto(s)
Drenaje/métodos , Hipospadias/cirugía , Stents , Uretra/cirugía , Cateterismo Urinario/métodos , Anciano , Niño , Divertículo/etiología , Humanos , Incidencia , Masculino , Estudios Retrospectivos , Estrechez Uretral/etiología , Cateterismo Urinario/instrumentación
9.
Urol Int ; 83(4): 476-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19996658

RESUMEN

Ureteral triplication is one of the rarest malformations of the upper urinary tract. We report the case of a 12-year-old girl with right ureteral triplication combined with renal ectopia and ureteral cyst with stenosis at the junction of the ureteral cyst and distal ureter. The ureteral cyst was tailored and tubularized, and the tight junction was removed, as in Hynes-Anderson ureteropyeloplasty; on reevaluation almost 4 years later, kidney function was normal and computed tomography showed a normal kidney and ureter.


Asunto(s)
Anomalías Múltiples , Quistes/complicaciones , Riñón/anomalías , Uréter/anomalías , Enfermedades Ureterales/complicaciones , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/cirugía , Niño , Quistes/diagnóstico , Quistes/cirugía , Femenino , Humanos , Riñón/cirugía , Uréter/cirugía , Enfermedades Ureterales/cirugía
10.
Onco Targets Ther ; 6: 1751-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324342

RESUMEN

BACKGROUND: Neuroblastoma (NB) is the most common solid extracranial tumor in children. However, the molecular mechanism and progression of NB is largely unknown, and unfortunately, the prognosis is poor. Src-associated in mitosis with a molecular weight of 68 kDa (Sam68) is associated with carcinogenesis and neurogenesis. The present study aimed to investigate the clinical and prognostic significance of Sam68 in NB. METHODS: The expression of Sam68 in immortalized normal epithelial cells, NB cell lines, and in four cases of paired NB tissue and adjacent normal tissue from the same patient was examined using Western blotting, reverse transcription-polymerase chain reaction (PCR) and real-time reverse transcription-PCR. The proliferation of NB cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Sam68 protein expression was analyzed in 90 NB cases characterized as clinicopathological using immunohistochemistry. Statistical analyses were applied to evaluate the diagnostic value and associations of Sam68 with clinical parameters. RESULTS: Western blotting and reverse transcription-PCR showed that the expression level of Sam68 was markedly higher in NB cell lines than in the immortalized normal epithelial cells at both messenger RNA and protein levels. The MTT assay revealed that Sam68 expression supported proliferation of NB cells. Sam68 expression levels were significantly up-regulated in tumor tissues in comparison to the matched adjacent normal tissues from the same patient. Sam68 protein level was positively correlated with clinical stage (P<0.001), tumor histology (P<0.001), and distant metastasis (P=0.029). Patients with higher Sam68 expression had shorter overall survival time, whereas those with lower tumor Sam68 expression had longer survival time. CONCLUSION: Our results suggest that Sam68 expression is associated with neuroblastoma progression and may represent a novel and valuable predictor for prognostic evaluation of neuroblastoma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA