Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 50(13): 3838-3850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37555904

RESUMEN

PURPOSE: Programmed cell death protein-1/ligand-1 (PD-1/L1) blockade has been a breakthrough in the treatment of patients with non-small cell lung cancer (NSCLC), but there is still a lack of effective methods to screen patients. Here we report a novel 68 Ga-labeled nanobody [68 Ga]Ga-THP-APN09 for PET imaging of PD-L1 status in mouse models and a first-in-human study in NSCLC patients. METHODS: [68 Ga]Ga-THP-APN09 was prepared by site-specific radiolabeling, with no further purification. Cell uptake assays were completed in the human lung adenocarcinoma cell line A549, NSCLC cell line H1975 and human PD-L1 gene-transfected A549 cells (A549PD-L1). The imaging to image PD-L1 status and biodistribution were investigated in tumor-bearing mice of these three tumor cell types. The first-in-human clinical translational trial was registered as NCT05156515. The safety, radiation dosimetry, biodistribution, and correlations of tracer uptake with immunohistochemical staining and major pathologic response (MPR) were evaluated in NSCLC patients who underwent adjuvant immunotherapy combined with chemotherapy. RESULTS: Radiosynthesis of [68 Ga]Ga-THP-APN09 was achieved at room temperature and a pH of 6.0-6.5 in 10 min with a high radiochemical yield (> 99%) and 13.9-27.8 GBq/µmol molar activity. The results of the cell uptake study reflected variable levels of surface PD-L1 expression observed by flow cytometry in the order A549PD-L1 > H1975 > A549. In small-animal PET/CT imaging, H1975 and A549PD-L1 tumors were clearly visualized in an 8.3:1 and 2.2:1 ratios over PD-L1-negative A549 tumors. Ex vivo biodistribution studies showed that tumor uptake was consistent with the PET results, with the highest A549PD-L1 being taken up the most (8.20 ± 0.87%ID/g), followed by H1975 (3.69 ± 0.50%ID/g) and A549 (0.90 ± 0.16%ID/g). Nine resectable NSCLC patients were enrolled in the clinical study. Uptake of [68 Ga]Ga-THP-APN09 was mainly observed in the kidneys and spleen, followed by low uptake in bone marrow. The radiation dose is within a reliable range. Tumor uptake was positively correlated with PD-L1 expression TPS (rs = 0.8763, P = 0.019). Tumor uptake of [68 Ga]Ga-THP-APN09 (SUVmax) in MPR patients was higher than that in non-MPR patients (median SUVmax 2.73 vs. 2.10, P = 0.036, determined with Mann-Whitney U-test). CONCLUSION: [68 Ga]Ga-THP-APN09 has the potential to be transformed into a kit-based radiotracer for rapid, simple, one-step, room temperature radiolabeling. The tracer can detect PD-L1 expression levels in tumors, and it may make it possibility to predict the response of PD-1 immunotherapy combined with chemotherapy. Confirmation in a large number of cases is needed. TRIAL REGISTRATION: Clinical Trial (NCT05156515). Registered 12 December 2021.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Radioisótopos de Galio , Antígeno B7-H1/metabolismo , Distribución Tisular , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral
2.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36617021

RESUMEN

Fixed-wing vertical take-off and landing (VTOL) UAVs have received more and more attention in recent years, because they have the advantages of both fixed-wing UAVs and rotary-wing UAVs. To meet its large flight envelope, the VTOL UAV needs accurate measurement of airflow parameters, including angle of attack, sideslip angle and speed of incoming flow, in a larger range of angle of attack. However, the traditional devices for the measurement of airflow parameters are unsuitable for large-angle measurement. In addition, their performance is unsatisfactory when the UAV is at low speed. Therefore, for tail-sitter VTOL UAVs, we used a 5-hole pressure probe to measure the pressure of these holes and transformed the pressure data into the airflow parameters required in the flight process using an artificial neural network (ANN) method. Through a series of comparative experiments, we achieved a high-performance neural network. Through the processing and analysis of wind-tunnel-experiment data, we verified the feasibility of the method proposed in this paper, which can make more accurate estimates of airflow parameters within a certain range.

3.
Bioconjug Chem ; 31(8): 1971-1980, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32660241

RESUMEN

Human epidermal growth factor receptor-2 (HER2)-enriched breast cancer is characterized by strong invasiveness, high recurrence rate, and poor prognosis. HER2-specific imaging can help screening right patients for appropriate HER2-targeted therapies. Previously, we have developed a 99mTc-labeled HER2-targeted H6 peptide for SPECT imaging of breast cancer. However, the poor metabolic stability and high gallbladder uptake hamper its clinical application. In this study, a retro-inverso D-peptide of H6 (RDH6) was designed to increase the metabolic stability. PEGylation was used to improve its water solubility and in vivo pharmacokinetics. The results showed that the D-amino acids in 99mTc-PEG4-RDH6 brought better metabolic stability than 99mTc-PEG4-H6, thus achieving higher tumor uptake. As the length of the PEG chain increases, the hydrophilicity of the probes gradually increased, which may also be the main cause for the decreased liver uptake. Compared with radiotracers modified by PEG4 and PEG12, 99mTc-PEG24-RDH6 had a comparable tumor uptake and the lowest liver radioactivity. The SPECT imaging demonstrated that 99mTc-PEG24-RDH6 could specifically distinguish HER2-positive tumors from HER2-negative tumors with better imaging contrast, which thus has the potential for clinical screening of HER2-positive breast patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Péptidos/química , Polietilenglicoles/química , Receptor ErbB-2/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Neoplasias Experimentales , Compuestos de Organotecnecio , Péptidos/inmunología , Receptor ErbB-2/genética
4.
Bioconjug Chem ; 31(5): 1510-1521, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32347718

RESUMEN

In this study, we reported a 99mTc-labeled integrin α6-targeted peptide as the molecular imaging probe for tumor imaging by single-photon emission computed tomography (SPECT). We found that replacing Cys-Cys cyclized RWY peptide (sequence: cCRWYDENAC) with lactam-bridged cyclic cKiE peptide (sequence: cKRWYDENAisoE) did not sacrifice the integrin α6-binding affinity and specificity of cKiE radiotracer. To further improve the radiotracer's tumor targeting capability, the dimerized cKiE peptide (termed cKiE2) was designed, and the corresponding radiotracer 99mTc-cKiE2 was evaluated for tumor uptake and in vivo pharmacokinetics properties in tumor models. We found that cKiE2 showed higher binding affinity to integrin α6 than did monomeric RWY or cKiE peptide. The biodistribution results showed that the tumor uptake of 99mTc-cKiE2 was twice higher than that of 99mTc-RWY (3.20 ± 0.12 vs 1.26 ± 0.06 %ID/g, P < 0.001) at 0.5 h postinjection. The tumor to nontargeting tissue ratios were also enhanced in most normal organs. Specificity of 99mTc-cKiE2 for integrin α6 was demonstrated by competitive blocking of tumor uptake with excess cold peptide (3.20 ± 0.24 to 1.38 ± 0.23 %ID/g, P < 0.001). The integrin α6-positive tumors were clearly visualized by 99mTc-cKiE2/SPECT with low background except with a relatively high kidney uptake. The tumor uptake of 99mTc-cKiE2 correlates well with the tumor integrin α6 expression levels in a linear fashion (R2 = 0.9623). We also compared 99mTc-cKiE2 with an integrin αvß3-targeted radiotracer 99mTc-3PRGD2 in the orthotopic hepatocellular carcinoma tumor models. We found that the orthotopic tumor was clearly visualized with 99mTc-cKiE2. 99mTc-3PRGD2 imaging did not show tumor contours in situ as clearly as 99mTc-cKiE2. The tumor-to-liver ratios of 99mTc-cKiE2 and 99mTc-3PRGD2 were 2.20 ± 0.17 and 0.85 ± 0.20. In conclusion, 99mTc-cKiE2 is an improved SPECT radiotracer for imaging integrin α6-positive tumors and has great potential for further clinical application.


Asunto(s)
Integrina alfa6/metabolismo , Péptidos/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Humanos , Ratones , Péptidos/química , Péptidos/farmacocinética , Unión Proteica , Trazadores Radiactivos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
5.
Bioconjug Chem ; 30(7): 2038-2048, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31063685

RESUMEN

Previously, we successfully developed the c(phg-isoDGRk) peptide as a novel integrin α5ß1-targeted SPECT imaging probe 99mTc-HisoDGR for Glioma imaging. However, the fast clearance of 99mTc-HisoDGR in blood reduced its tumor accumulation and retention, which would be the obstacles for further clinical application. Dimerization and albumin-binding strategies have been proven as effective approaches to improve tumor targeting capability and blood circulation time of radiotracers. In this study, the novel PEGylated dimeric isoDGR peptides (termed 3PisoDGR2) and its analogue with an albumin binder (termed AB-3PisoDGR2) were designed, and the corresponding radiotracers 99mTc-3PisoDGR2 and 99mTc-AB-3PisoDGR2 were fabricated and assessed for tumor-targeting and in vivo pharmacokinetics properties in subcutaneous and orthotopic tumor models. The dimerization of isoDGR peptide provided higher binding affinity to tumor cells and longer blood circulation time than the original monomeric isoDGR peptide, resulting in twice increased tumor uptake (99mTc-3PisoDGR2 2.51 ± 0.17 %ID/g vs 99mTc-PisoDGR 1.17 ± 0.21 %ID/g, P < 0.01) at 0.5 h post-injection (p.i.) and enhanced tumor to nontargeting tissue ratios (T/NT) in most normal organs. The blocking study indicated that the tumor uptake was receptor-mediated specifically. NanoScanSPECT/CT imaging of 99mTc-3PisoDGR2 in glioma tumor-bearing model showed clear visions of tumors with low background, except high uptake in excretion system including kidneys and bladder at all detected time points (0.5, 1, and 2 h p.i.). The orthotopic glioma tumor could also be clearly visualized by nanoScanSPECT/CT imaging with 99mTc-3PisoDGR2. The addition of albumin-binding entity further prolonged blood circulation time and reached higher tumor uptake for 99mTc-AB-3PisoDGR2. However, since 99mTc-AB-3PisoDGR2 is less capable of passing BBB than 99mTc-3PisoDGR2, 99mTc-3PisoDGR2 is preferable for the in situ glioma imaging. In conclusion, 99mTc-3PisoDGR2 represents an improved molecular probe for integrin α5ß1-targeted tumor imaging, showing more potential for further clinical application.


Asunto(s)
Glioma/diagnóstico por imagen , Compuestos de Organotecnecio/química , Péptidos/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Dimerización , Femenino , Glioma/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Compuestos de Organotecnecio/farmacocinética , Péptidos/metabolismo , Péptidos/farmacocinética , Radiofármacos/química , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Albúmina Sérica/metabolismo
6.
Bioconjug Chem ; 28(9): 2410-2419, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28810733

RESUMEN

Hybrid bicelles have been demonstrated to have great potential for hydrophobic drug delivery. Herein, we report a near-infrared light-driven, temperature-sensitive hybrid bicelles co-encapsulating hydrophobic doxorubicin (DOX) and indocyanine green (ICG) (DOX/ICG@HBs). Encapsulation of ICG into the lipid bilayer membrane of DOX/ICG@HBs results in higher photostability than free ICG. DOX/ICG@HBs exhibited temperature-regulated drug release behavior and significant photothermal cytotoxicity. After tail vein injection, such discotic nanoparticles of DOX/ICG@HBs were found to accumulate selectively at the tumor site and act as an efficient probe to enhance fluorescence imaging greatly. The in vivo experiments showed that the DOX/ICG@HBs-mediated chemo- and photothermal combination therapy was more cytotoxic to tumor cells than the photothermal treatment or the chemotherapy alone due to the synergistic effect, reducing the occurrence of tumor metastasis. Therefore, DOX/ICG@HBs can act as a powerful nanotheranostic agent for chemo/photothermal therapy of cancer under the guidance of near-infrared fluorescence imaging.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/terapia , Colorantes/administración & dosificación , Preparaciones de Acción Retardada/química , Doxorrubicina/administración & dosificación , Verde de Indocianina/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico , Mama/efectos de los fármacos , Mama/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colorantes/farmacocinética , Colorantes/uso terapéutico , Terapia Combinada/métodos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Humanos , Hipertermia Inducida/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/uso terapéutico , Rayos Infrarrojos , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Imagen Óptica/métodos , Fototerapia/métodos
7.
Bioconjug Chem ; 28(1): 53-63, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27718555

RESUMEN

This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of hybrid bicelles. It was found that the drug release rate increased with increasing the molar percentages of DSPE-PEG2000, and 57.38%, 69.21%, 78.69%, 81.64%, and 82.23% of hydrophobic doxorubicin was released within 120 h from the nanodics incorporating with 0%, 2.5%, 5%, 10%, and 20% DSPE-PEG2000, respectively. Compared with the non-PEGylated nanodisc and free doxorubicin, the PEGylated nanodiscs showed good biocompatibility, high cellular uptake, and adhesion, as well as high local drug accumulation. In addition, both in vitro and in vivo results demonstrated significantly improved antitumor efficacy of the PEGylated nanodisc than its control groups. Thus, the PEGylated nanodisc with partial silica coating offers a facile and efficient strategy of drug delivery for chemotherapy with improved patient acceptance and compliance.


Asunto(s)
Portadores de Fármacos , Liberación de Fármacos , Nanoestructuras , Fosfolípidos/química , Polietilenglicoles/química , Dióxido de Silicio/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapéutico , Materiales Biocompatibles , Línea Celular Tumoral , Células Cultivadas , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Distribución Tisular
8.
J Nanosci Nanotechnol ; 16(3): 2184-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455617

RESUMEN

A theranostic agent has been successfully constructed for fluorescence/ultrasound dual-modal imaging guided photothermal therapy by loading the fluorescent dye R6G into polylactide microcapsules (PLA MCs) followed by deposition of Prussian blue nanoparticles (PB NPs) into the surface of PLA MCs. It was proved that the obtained microcapsules of R6G@PLA/PB MCs could serve as an efficient probe to simultaneously enhance fluorescence imaging and ultrasound imaging greatly in vivo. R6G@PLA/PB MCs exhibited significant photothermal cytotoxicity. Cancer cells could be killed efficiently through photothermal effects of R6G@PLA/PB MCs due to the strong absorption of PB NPs in the near infrared region under laser irradiation. In a word, R6G@PLA/PB MCs integrate multiple capabilities for effective tumor imaging and therapy. Such a single agent provides us a possibility to interpret accurately the obtained images, identify the size and location of the tumor, as well as guide and monitor the photothermal therapy.


Asunto(s)
Cápsulas , Ferrocianuros/química , Hipertermia Inducida , Ácido Láctico/química , Neoplasias/terapia , Fototerapia , Polímeros/química , Animales , Femenino , Fluorescencia , Células HeLa , Humanos , Masculino , Poliésteres , Conejos , Ultrasonido
9.
ACS Nano ; 18(8): 6314-6332, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345595

RESUMEN

Immune checkpoint blockade (ICB) therapy still suffers from insufficient immune response and adverse effect of ICB antibodies. Chemodynamic therapy (CDT) has been demonstrated to be an effective way to synergize with ICB therapy. However, a low generation rate of reactive oxygen species and poor tumor penetration of CDT platforms still decline the immune effects. Herein, a charge-reversal nanohybrid Met@BF containing both Fe3O4 and BaTiO3 nanoparticles in the core and Metformin (Met) on the surface was fabricated for tumor microenvironment (TME)- and ultrasound (US)-activated piezocatalysis-chemodynamic immunotherapy of cancer. Interestingly, Met@BF had a negative charge in blood circulation, which was rapidly changed into positive when exposed to acidic TME attributed to quaternization of tertiary amine in Met, facilitating deep tumor penetration. Subsequently, with US irradiation, Met@BF produced H2O2 based on piezocatalysis of BaTiO3, which greatly enhanced the Fenton reaction of Fe3O4, thus boosting robust antitumor immune response. Furthermore, PD-L1 expression was inhibited by the local released Met to further augment the antitumor immune effect, achieving effective inhibitions for both primary and metastatic tumors. Such a combination of piezocatalysis-enhanced chemodynamic therapy and Met-mediated deep tumor penetration and downregulation of PD-L1 provides a promising strategy to augment cancer immunotherapy.


Asunto(s)
Metformina , Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Peróxido de Hidrógeno , Inmunoterapia , Neoplasias/tratamiento farmacológico , Metformina/farmacología , Microambiente Tumoral , Línea Celular Tumoral
10.
Sci Total Environ ; 912: 169365, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104823

RESUMEN

The rapid development of nuclear energy in China has led to increased attention to the treatment of radioactive wastewaters. Herein, a novel magnetic adsorbent, magnetic Prussian blue­molybdenum disulfide (PB/Fe3O4/MoS2) nanocomposite, was prepared by a simple in-situ fixation of ferric oxide nanoparticles (Fe3O4 NPs) and Prussian Blue (PB) shell layers on the surface of molybdenum disulfide (MoS2) nanosheets carrier. The prepared PB/Fe3O4/MoS2 nanocomposites adsorbent displayed excellent fast magnetic separation and adsorption capacity of Cs+ (Qm = 80.51 mg/g) from water. The adsorption behavior of Cs+ by PB/Fe3O4/MoS2 conformed to Langmuir isothermal and second-order kinetic model, which belonged to chemical adsorption and endothermic reaction. The equilibrium adsorption capacity of PB/Fe3O4/MoS2 to Cs+ has reached 90 % in less than 110 min. Moreover, the adsorption properties of PB/Fe3O4/MoS2 remained good in the pH range of 2-7. Based on this, PB/Fe3O4/MoS2 complex was a fast and high selectivity adsorption material for Cs+, which was expected to be used in the practical treatment of cesium-containing radioactive wastewater.

11.
Chemistry ; 19(47): 16113-21, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24123292

RESUMEN

This paper reports the facile design and synthesis of a series of lipidic organoalkoxysilanes with different numbers of triethoxysilane headgroups and hydrophobic alkyl chains linked by glycerol and pentaerythritol for the construction of cerasomes with regulated surface siloxane density and controlled release behavior. It was found that the number of triethoxysilane headgroups affected the properties of the cerasomes for encapsulation efficiency, drug loading capacity, and release behavior. For both water-soluble doxorubicin (DOX) and water-insoluble paclitaxel (PTX), the release rate from the cerasomes decreased as the number of triethoxysilane headgroups increased. The slower release rate from the cerasomes was attributed to the higher density of the siloxane network on the surface of the cerasomes, which blocks the drug release channels. In contrast to the release results with DOX, the introduction of one more hydrophobic alkyl chain into the cerasome-forming lipid resulted in a slower release rate of PTX from the cerasomes due to the formation of a more compact cerasome bilayer. An MTT viability assay showed that all of these drug-loaded cerasomes inhibited proliferation of the HepG2 cancer cell line. The fine tuning of the chemical structure of the cerasome-forming lipids would foster a new strategy to precisely regulate the release rate of drugs from cerasomes.


Asunto(s)
Liposomas/química , Nanoestructuras/química , Silanos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Doxorrubicina/química , Doxorrubicina/farmacología , Glicerol/química , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Paclitaxel/química , Paclitaxel/farmacología , Glicoles de Propileno/química , Silanos/síntesis química
12.
Langmuir ; 29(48): 14976-83, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24188471

RESUMEN

Doxorubicin hydrochloride (DOX)-loaded magnetic cerasomes (DLMCs) were successfully constructed by loading both hydrophobic Fe3O4 nanoparticles (NPs) and antitumor drug DOX into the aqueous interior of cerasomes via facile one-step construction. A possible explanation is that the hydrophobic Fe3O4 NPs can be trapped inside the aqueous core of cerasomes through the formation of an intermediate Fe3O4/micelle complex. It was found that the loading content of Fe3O4 in DLMCs could reach the maximum at a Fe3O4/lipid molar ratio of 4:1. Moreover, DLMCs demonstrated high superparamagnetism and responded strongly to magnetic fields. In addition, DLMCs had a high encapsulation efficiency of 43.4 ± 4.7% and a high drug loading content of 3.2 ± 1.3%. In comparison to drug-loaded liposomes, DLMCs exhibited higher storage stability and better sustained release behavior. A cellular uptake study showed that the use of an external magnetic field enables a rapid and efficient uptake of DLMCs by cancer cells, resulting in higher capability to kill tumor cells than non-magnetic drug-loaded cerasomes. This study suggests that magnetic cerasome offers a potential and effective drug carrier for anticancer applications.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Liposomas/química , Estabilidad de Medicamentos , Compuestos Férricos/química , Campos Magnéticos , Micelas , Modelos Moleculares , Estructura Molecular
13.
ACS Appl Mater Interfaces ; 15(12): 15220-15234, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36922152

RESUMEN

Conventional NO gas generation based on l-arginine (l-Arg) is usually dependent on H2O2 and O2, both of which are very limited within the tumor microenvironment, thus greatly limiting l-Arg's therapeutic effect. Herein, a novel nanoplatform for efficiently triggering NO production based on ultrasound-induced piezocatalysis was developed, which was fabricated by coating amphiphilic poly-l-arginine (DSPE-PEG2000-Arg, DPA) on the piezoelectric material of barium titanate (BTO). The resulting BTO@DPA nanoparticles can efficiently generate H2O2, 1O2, and O2 via ultrasound-induced piezocatalysis based on BTO and oxidize the surface arginine to produce NO, which can even further interact with the reactive oxygen species (ROS) to produce more reactive peroxynitrite, thus inducing serious tumor cell apoptosis both in hypoxia and normoxia. After intravenous injection, BTO@DPA accumulated well at the tumor tissue at 4 h postinjection; later, ultrasound irradiation on the tumor not only achieved the best tumor inhibition rate of ∼70% but also completely inhibited tumor metastasis to the lungs via the alleviation of tumor hypoxia. Such a strategy was not dependent on the tumor microenvironment and can be well controlled by ultrasound irradiation, providing a simple and efficient therapy paradigm for hypoxic tumor.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Peróxido de Hidrógeno/farmacología , Hipoxia/tratamiento farmacológico , Especies Reactivas de Oxígeno/farmacología , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Arginina/farmacología , Línea Celular Tumoral , Microambiente Tumoral
14.
Biology (Basel) ; 12(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37998051

RESUMEN

The mitochondrial genome (mitogenome or mtDNA), the extrachromosomal genome, is a multicopy circular DNA with high mutation rates due to replication and repair errors. A mitochondrion, cell, tissue, organ, or an individual body may hold multiple variants, both inherited and developed over a lifetime, which make up individual mitogene pools. This phenomenon is also called mtDNA heteroplasmy. MtDNA variants influence cellular and tissular functions and are consequently subjected to selection. Although it has long been recognized that only inheritable germline heteroplasmies have evolutionary significance, non-inheritable somatic heteroplasmies have been overlooked since they directly affect individual fitness and thus indirectly affect the fate of heritable germline variants. This review focuses on the characteristics, dynamics, and functions of mtDNA heteroplasmy and proposes the concept of individual mitogene pools to discuss individual genetic diversity from multiple angles. We provide a unique perspective on the relationship between individual genetic diversity and heritable genetic diversity and guide how the individual mitogene pool with novel genetic markers can be applied to ecological research.

15.
Nat Commun ; 14(1): 6187, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794000

RESUMEN

Gadolinium (Gd3+)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors. To elucidate the impact of O2 concentration on Gd-Tex radiosensitization, myoglobin (Mb) is loaded into Gd-NTs (Mb@Gd-NTs), resulting in efficient relief of tumor hypoxia and significant enhancement of Gd-Tex radiosensitization, eventually inducing the obvious long-term antitumor immune memory to inhibit tumor recurrence. In addition to Gd3+, the versatile Mb@Gd-NTs can also chelate 177Lu3+ (Mb@177Lu/Gd-NTs), enabling SPECT/MRI dual-modality imaging for accurately monitoring drug delivery in real-time. This "one-for-all" nanoplatform with the capability of chelating various trivalent metal ions exhibits broad clinical application prospects in imaging-guided radiosensitization therapy.


Asunto(s)
Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Gadolinio , Mioglobina , Oxígeno , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Imagen por Resonancia Magnética
16.
Nanomedicine ; 8(2): 136-46, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21930111

RESUMEN

The purpose of this work is to study the antimetastasis activity of gadolinium metallofullerenol nanoparticles (f-NPs) in malignant and invasive human breast cancer models. We demonstrated that f-NPs inhibited the production of matrix metalloproteinase (MMP) enzymes and further interfered with the invasiveness of cancer cells in tissue culture condition. In the tissue invasion animal model, the invasive primary tumor treated with f-NPs showed significantly less metastasis to the ectopic site along with the decreased MMP expression. In the same animal model, we observed the formation of a fibrous cage that may serve as a physical barrier capable of cancer tissue encapsulation that cuts the communication between cancer- and tumor-associated macrophages, which produce MMP enzymes. In another animal model, the blood transfer model, f-NPs potently suppressed the establishment of tumor foci in lung. Based on these data, we conclude that f-NPs have antimetastasis effects and speculate that utilization of f-NPs may provide a new strategy for the treatment of tumor metastasis. FROM THE CLINICAL EDITOR: In this study utilizing metallofullerenol nanoparticles, the authors demonstrate antimetastasis effects and speculate that utilization of these nanoparticles may provide a new strategy in metastatic tumor therapy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Gadolinio/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de la Metaloproteinasa de la Matriz , Nanopartículas del Metal/uso terapéutico , Animales , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Femenino , Gadolinio/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/secundario , Macrófagos/química , Macrófagos/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica/prevención & control , Trasplante de Neoplasias
17.
ACS Biomater Sci Eng ; 8(4): 1583-1595, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263095

RESUMEN

The abundant desmoplastic stroma and the lack of sufficient targets on pancreatic cancer cells render poor drug penetration and cellular uptake, which significantly compromise the chemotherapy efficacy. Herein, we reported a three-step cascade delivery strategy for selective delivery of paclitaxel (PTX) to achieve a targeted therapy for pancreatic cancer. cRGD and cCLT1 peptides, which could target the integrin and fibronectin, respectively, overexpressed in pancreatic cancer cells and stroma, were decorated on PTX-loaded microbubbles, resulting in the formation of dual-targeting PTX-RCMBs. In this strategy, ultrasound in combination with PTX-RCMBs first enhanced the permeability of tumor vessels via cavitation effects and simultaneously helped the generated PTX-RCNPs penetrate into the stroma. Then, the cCLT1 peptide modified on PTX-RCNPs selectively bound the fibronectin highly expressed in the stroma and later targeted the integrin (α5ß1) on the cell surface. Finally, another targeting cRGD peptide modified on PTX-RCNPs would further promote PTX uptake via targeting the integrin (αvß3) on the cell surface. This strategy significantly increased the delivery of PTX into tumor tissues. Moreover, the in vivo effective accumulation of PTX was monitored by ultrasound and fluorescence bimodal imaging. The tumor growth inhibition was investigated on subcutaneous tumor mouse models with 89.8% growth inhibition rate during 21 days of treatment, showing great potential for improving pancreatic cancer therapy.


Asunto(s)
Microburbujas , Neoplasias Pancreáticas , Animales , Sistemas de Liberación de Medicamentos/métodos , Fibronectinas/uso terapéutico , Integrinas/uso terapéutico , Ratones , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
18.
ACS Appl Mater Interfaces ; 13(17): 19679-19694, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33876926

RESUMEN

Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Metástasis de la Neoplasia/prevención & control , Imagen Óptica/métodos , Terapia Fototérmica , Inhibidores de Agregación Plaquetaria/administración & dosificación , Ticagrelor/administración & dosificación , Animales , Línea Celular Tumoral , Terapia Combinada , Sistemas de Liberación de Medicamentos , Femenino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Biomater Sci ; 8(9): 2526-2536, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32215400

RESUMEN

Sonodynamic therapy (SDT) is a prospective therapy for many tumors by activation of sonosensitizers to produce reactive oxygen species (ROS) by ultrasound (US). However, limited generation of ROS and low drug delivery efficiency of sonosensitizers to the tumor tissue still hinder the application of SDT. Herein, an amphiphilic rose bengal (ARB) conjugate was designed to fabricate rose bengal microbubbles (RB-MBs) with high drug-loading contents (∼6.8%) and excellent contrast enhancement capability for US imaging, well suited for detecting tumor location and size. More importantly, RB-MBs could be successfully converted into RB-NPs by local US exposure, resulting in ∼7.5 times higher drug accumulation at the tumor tissue through the sonoporation effect as compared to RB-NPs and RB-MBs without US sonication. Meanwhile, using RB as the MB shell facilitated US energy transfer by the US mediated collapse of MBs through either a sonoluminescence or pyrolysis process; thus, the ROS generation efficiency could be greatly enhanced, resulting in a significantly higher tumor inhibition rate for the RB-MBs + US (∼76.5%) in the HT-29 tumor model as compared to conventional MBs + US and RB-NPs + US (∼23.8% and ∼49.2%), respectively. All these results suggested that this novel sonosensitizer delivery system of RB-MBs combined with US is a powerful strategy for remarkably enhancing SDT therapeutic efficacy with minimal side effects, showing great potential in cancer theranostics.


Asunto(s)
Colorantes Fluorescentes/administración & dosificación , Microburbujas , Nanopartículas/administración & dosificación , Neoplasias/terapia , Rosa Bengala/administración & dosificación , Terapia por Ultrasonido , Animales , Femenino , Células HT29 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Ultrasonografía
20.
ACS Nano ; 14(11): 15904-15918, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33175487

RESUMEN

Hypoxia is a hostile hallmark of most solid tumors, which often leads to multidrug resistance (MDR) and causes the failure of chemotherapy. Hypoxia also promotes epithelial-mesenchymal transition (EMT), leading to acceleration of tumor metastasis. Many chemotherapeutic drugs can further exacerbate hypoxia and thus promote metastasis. Therefore, relieving hypoxia is necessary for chemotherapy to inhibit both MDR and EMT. Herein, highly stable cerasomal perfluorocarbon nanodroplets with an atomic layer of polyorganosiloxane surface and pH-sensitive tumor-targeting peptide (D-vPCs-O2) were fabricated to co-deliver oxygen and therapeutic drug, doxorubicin. High-intensity focused ultrasound (HIFU) was utilized to trigger the co-release of doxorubicin and oxygen and simultaneously enhance ultrasound imaging, therefore achieving imaging-guided drug delivery. Mild-temperature HIFU (M-HIFU) not only triggered oxygen release from nanodroplets but also slightly elevated tumor temperature to accelerate tumor blood flow. The oxygen release and temperature elevation jointly relieved tumor hypoxia and alleviated MDR, which greatly enhanced the drug therapeutic efficacy as compared to clinically used doxorubicin and Doxil. Overall side effects were also largely reduced owing to the ultrastable drug loading of cerasome. The improvement of insufficient chemotherapy and the relief of tumor hypoxia corporately down-regulated TGF-ß1, leading to the alleviation of EMT, and therefore significantly inhibited tumor metastasis. When "D-vPCs-O2 + M-HIFU" was utilized as a neoadjuvant chemotherapy, nanodroplets down-regulated heat shock proteins, reducing tumor relapse after the high-temperature HIFU (H-HIFU)-mediated hyperthermia ablation. The chemo-hyperthermia therapy totally eradicated tumors without any relapse or metastasis, providing a promising way to treat the triple-negative breast cancer, which is highly malignant, easily metastatic, and lacks effective treatments.


Asunto(s)
Fluorocarburos , Neoplasias , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Transición Epitelial-Mesenquimal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA