Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(39): e2103172, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34310041

RESUMEN

Light is essential to all life on the earth. Thus, highly efficient light-harvesting systems with the sequential energy transfer process are significant for using solar energy in photosynthesis. For developing an efficient light-harvesting system, a liquid aggregation-induced emission (AIE) dye TPE-EA is obtained, as a donor and solvent, which can light up the aggregation caused quenching (ACQ) Nile Red (NiR, acceptor) to construct a quantitative Förster resonance energy transfer (FRET) system in NiR⊂TPE-EA. Impressively, this FRET pair shows an impressive photothermal effect, producing a peak temperature of 119 °C while excited by UV light, with 37.8% of conversion efficiency. NiR⊂TPE-EA is quite different from most other photothermal materials, which require excitation with long wavelength light (>520 nm). Therefore, NiR⊂TPE-EA firstly converts the solar into thermal energy and then into electric energy to achieve sequential photo-thermo-electric conversion. Such sequential conversion, suitable for being excited by sunlight, is anticipated to unlock new and smart approaches for capturing solar energy.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Energía Solar , Electricidad , Fotosíntesis , Luz Solar
2.
Angew Chem Int Ed Engl ; 60(46): 24549-24557, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34425040

RESUMEN

The occurrence and transmission of chirality is a fascinating characteristic of nature. However, the intermolecular transmission efficiency of circularly polarized luminescence (CPL) remains challenging due to poor through-space energy transfer. We report a unique CPL transmission from inducing the achiral acceptor to emit CPL within a specific liquid crystal (LC)-based intermolecular system through a circularly polarized fluorescence resonance energy transfer (C-FRET), wherein the luminescent cholesteric LC is employed as the chirality donor, and rationally designed achiral long-wavelength aggregation-induced emission (AIE) fluorophore acts as the well-assembled acceptor. In contrast to photon-release-and-absorption, the chirality transmission channel of C-FRET is highly dependent upon the energy resonance in the highly intrinsic chiral assembly of cholesteric LC, as verified by deliberately separating the achiral acceptor from the chiral donor to keep it far beyond the resonance distance. This C-FRET mode provides a de novo strategy concept for high-level information processing for applications such as high-density data storage, combinatorial logic calculation, and multilevel data encryption and decryption.

3.
Chem Sci ; 12(9): 3146-3151, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34164081

RESUMEN

Balancing the rigidity of a π-conjugated structure for strong emission and the flexibility of liquid crystals for self-assembly is the key to realizing highly emissive liquid crystals (HELCs). Here we show that (1) integrating organization-induced emission into dual molecular cooperatively-assembled liquid crystals, (2) amplifying mesogens, and (3) elongating the spacer linking the emitter and the mesogen create advanced materials with desired thermal-optical properties. Impressively, assembling the fluorescent acceptor Nile red into its host donor designed according to the aforementioned strategies results in a temperature-controlled Förster resonance energy transfer (FRET) system. Indeed, FRET exhibits strong S-curve dependence as temperature sweeps through the liquid crystal phase transformation. Such thermochromic materials, suitable for dynamic thermo-optical sensing and modulation, are anticipated to unlock new and smart approaches for controlling and directing light in stimuli-responsive devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA