Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.799
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(2): 300-313, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036630

RESUMEN

Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:


Asunto(s)
Motilidad Gastrointestinal , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/microbiología , Macrófagos/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Técnicas In Vitro , Factor Estimulante de Colonias de Macrófagos , Ratones , Neuronas/metabolismo , Peristaltismo , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de Señal
2.
Nat Methods ; 20(3): 387-399, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797409

RESUMEN

Spatial omics technologies generate wealthy but highly complex datasets. Here we present Spatial Omics DataBase (SODB), a web-based platform providing both rich data resources and a suite of interactive data analytical modules. SODB currently maintains >2,400 experiments from >25 spatial omics technologies, which are freely accessible as a unified data format compatible with various computational packages. SODB also provides multiple interactive data analytical modules, especially a unique module, Spatial Omics View (SOView). We conduct comprehensive statistical analyses and illustrate the utility of both basic and advanced analytical modules using multiple spatial omics datasets. We demonstrate SOView utility with brain spatial transcriptomics data and recover known anatomical structures. We further delineate functional tissue domains with associated marker genes that were obscured when analyzed using previous methods. We finally show how SODB may efficiently facilitate computational method development. The SODB website is https://gene.ai.tencent.com/SpatialOmics/ . The command-line package is available at https://pysodb.readthedocs.io/en/latest/ .


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Bases de Datos Factuales , Perfilación de la Expresión Génica/métodos
3.
PLoS Biol ; 21(12): e3002387, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048360

RESUMEN

Lysophosphatidylserine (LysoPS) is a naturally occurring lipid mediator involved in various physiological and pathological processes especially those related to the immune system. GPR34, GPR174, and P2Y10 have been identified as the receptors for LysoPS, and its analogues have been developed as agonists or antagonists for these receptors. However, the lack of structural information hinders the drug development with novel characteristics, such as nonlipid ligands and allosteric modulators. Here, we determined the structures of human GPR34 and GPR174 in complex with LysoPS and G protein by cryo-EM. Combined with structural analysis and functional studies, we elucidated the lipid-binding modes of these receptors. By structural comparison, we identified the structural features of GPR34 and GPR174 in active state. Taken together, our findings provide insights into ligand recognition and signaling of LysoPS receptors and will facilitate the development of novel therapeutics for related inflammatory diseases and autoimmune diseases.


Asunto(s)
Lisofosfolípidos , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/metabolismo
4.
PLoS Pathog ; 19(12): e1011831, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091362

RESUMEN

Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.


Asunto(s)
Parásitos , Fosfoproteínas Fosfatasas , Toxoplasma , Animales , Humanos , Ratones , Dominio Catalítico , Ciclo Celular/genética , División Celular , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Virulencia/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo
5.
Am J Pathol ; 194(6): 1078-1089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417697

RESUMEN

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Ferroptosis , Especies Reactivas de Oxígeno , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Animales , Humanos , Ratones , Masculino , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Microvasos/patología , Microvasos/metabolismo , Hierro/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
6.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38613477

RESUMEN

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Asunto(s)
Condrocitos , Técnicas de Cocultivo , Microtia Congénita , Ingeniería de Tejidos , Proteína de Unión al GTP rhoA , Condrocitos/metabolismo , Condrocitos/citología , Humanos , Ingeniería de Tejidos/métodos , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Microtia Congénita/metabolismo , Microtia Congénita/genética , Cartílago Auricular/citología , Cartílago Auricular/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Condrogénesis/genética , Masculino , Andamios del Tejido/química , Femenino
7.
Nucleic Acids Res ; 51(13): 6981-6998, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37246706

RESUMEN

The molecular mechanism underlying white adipogenesis in humans has not been fully elucidated beyond the transcriptional level. Here, we found that the RNA-binding protein NOVA1 is required for the adipogenic differentiation of human mesenchymal stem cells. By thoroughly exploring the interactions between NOVA1 and its binding RNA, we proved that NOVA1 deficiency resulted in the aberrant splicing of DNAJC10 with an in-frame premature stop codon, reduced DNAJC10 expression at the protein level and hyperactivation of the unfolded protein response (UPR). Moreover, NOVA1 knockdown abrogated the down-regulation of NCOR2 during adipogenesis and up-regulated the 47b+ splicing isoform, which led to decreased chromatin accessibility at the loci of lipid metabolism genes. Interestingly, these effects on human adipogenesis could not be recapitulated in mice. Further analysis of multispecies genomes and transcriptomes indicated that NOVA1-targeted RNA splicing is evolutionarily regulated. Our findings provide evidence for human-specific roles of NOVA1 in coordinating splicing and cell organelle functions during white adipogenesis.


Asunto(s)
Cromatina , Proteínas de Unión al ARN , Respuesta de Proteína Desplegada , Animales , Humanos , Ratones , Adipogénesis/genética , Cromatina/genética , Antígeno Ventral Neuro-Oncológico , Empalme del ARN , Proteínas de Unión al ARN/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(44): e2207975119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279435

RESUMEN

Stress granules (SGs) are cytoplasmic biomolecular condensates containing proteins and RNAs in response to stress. Ras-GTPase-activating protein binding protein 1 (G3BP1) is a core SG protein. Caprin-1 and ubiquitin specific peptidase 10 (USP10) interact with G3BP1, facilitating and suppressing SG formation, respectively. The crystal structures of the nuclear transport factor 2-like (NTF2L) domain of G3BP1 in complex with the G3BP1-interacting motif (GIM) of Caprin-1 and USP10 show that both GIMs bind to the same hydrophobic pocket of G3BP1. Moreover, both GIMs suppressed the liquid-liquid phase separation (LLPS) of G3BP1, suggesting that Caprin-1 likely facilitates SG formation via other mechanisms. Thus, we dissected various domains of Caprin-1 and investigated their role in LLPS in vitro and SG formation in cells. The C-terminal domain of Caprin-1 underwent spontaneous LLPS, whereas the N-terminal domain and GIM of Caprin-1 suppressed LLPS of G3BP1. The opposing effect of the N- and C-terminal domains of Caprin-1 on SG formation were demonstrated in cells with or without the endogenous Caprin-1. We propose that the N- and C-terminal domains of Caprin-1 regulate SG formation in a "yin and yang" fashion, mediating the dynamic and reversible assembly of SGs.


Asunto(s)
ADN Helicasas , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , ADN Helicasas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos de Estrés , Proteínas Activadoras de GTPasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
9.
J Virol ; 97(6): e0041223, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255475

RESUMEN

Pseudorabies virus (PRV) is a double-stranded DNA virus that causes Aujeszky's disease and is responsible for economic loss worldwide. Transmembrane protein 41B (TMEM41B) is a novel endoplasmic reticulum (ER)-localized regulator of autophagosome biogenesis and lipid mobilization; however, the role of TMEM41B in regulating PRV replication remains undocumented. In this study, PRV infection was found to upregulate TMEM41B mRNA and protein levels both in vitro and in vivo. For the first time, we found that TMEM41B could be induced by interferon (IFN), suggesting that TMEM41B is an IFN-stimulated gene (ISG). While TMEM41B knockdown suppressed PRV proliferation, TMEM41B overexpression promoted PRV proliferation. We next studied the specific stages of the virus life cycle and found that TMEM41B knockdown affected PRV entry. Mechanistically, we demonstrated that the knockdown of TMEM41B blocked PRV-stimulated expression of the key enzymes involved in lipid synthesis. Additionally, TMEM41B knockdown played a role in the dynamics of lipid-regulated PRV entry-dependent clathrin-coated pits (CCPs). Lipid replenishment restored the CCP dynamic and PRV entry in TMEM41B knockdown cells. Together, our results indicate that TMEM41B plays a role in PRV infection via regulating lipid homeostasis. IMPORTANCE PRV belongs to the alphaherpesvirus subfamily and can establish and maintain a lifelong latent infection in pigs. As such, an intermittent active cycle presents great challenges to the prevention and control of PRV disease and is responsible for serious economic losses to the pig breeding industry. Studies have shown that lipids play a crucial role in PRV proliferation. Thus, the manipulation of lipid metabolism may represent a new perspective for the prevention and treatment of PRV. In this study, we report that the ER transmembrane protein TMEM41B is a novel ISG involved in PRV infection by regulating lipid synthesis. Therefore, our findings indicate that targeting TMEM41B may be a promising approach for the development of PRV vaccines and therapeutics.


Asunto(s)
Herpesvirus Suido 1 , Proteínas de la Membrana , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/fisiología , Interferones/metabolismo , Lípidos , Porcinos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
10.
J Transl Med ; 22(1): 562, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867291

RESUMEN

BACKGROUND: Intravitreal injections of angiogenesis inhibitors have proved efficacious in the majority of patients with ocular angiogenesis. However, one-fourth of all treated patients fail to derive benefits from intravitreal injections. tRNA-derived small RNA (tsRNA) emerges as a crucial class of non-coding RNA molecules, orchestrating key roles in the progression of human diseases by modulating multiple targets. Through our prior sequencing analyses and bioinformatics predictions, tRNA-Cys-5-0007 has shown as a potential regulator of ocular angiogenesis. This study endeavors to elucidate the precise role of tRNA-Cys-5-0007 in the context of ocular angiogenesis. METHODS: Quantitative reverse transcription PCR (qRT-PCR) assays were employed to detect tRNA-Cys-5-0007expression. EdU assays, sprouting assays, transwell assays, and Matrigel assays were conducted to elucidate the involvement of tRNA-Cys-5-0007 in endothelial angiogenic effects. STZ-induced diabetic model, OIR model, and laser-induced CNV model were utilized to replicate the pivotal features of ocular vascular diseases and evaluate the influence of tRNA-Cys-5-0007 on ocular angiogenesis and inflammatory responses. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were employed to elucidate the anti-angiogenic mechanism of tRNA-Cys-5-0007. Exosomal formulation was employed to enhance the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. RESULTS: tRNA-Cys-5-0007 expression was down-regulated under angiogenic conditions. Conversely, tRNA-Cys-5-0007 overexpression exhibited anti-angiogenic effects in retinal endothelial cells, as evidenced by reduced proliferation, sprouting, migration, and tube formation abilities. In diabetic, laser-induced CNV, and OIR models, tRNA-Cys-5-0007 overexpression led to decreased ocular vessel leakage, inhibited angiogenesis, and reduced ocular inflammation. Mechanistically, these effects were attributed to the targeting of vascular endothelial growth factor A (VEGFA) and TGF-ß1 by tRNA-Cys-5-0007. The utilization of an exosomal formulation further potentiated the synergistic anti-angiogenic and anti-inflammatory efficacy of tRNA-Cys-5-0007. CONCLUSIONS: Concurrent targeting of tRNA-Cys-5-0007 for anti-angiogenic and anti-inflammatory therapy holds promise for enhancing the effectiveness of current anti-angiogenic therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Antiinflamatorios , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antiinflamatorios/farmacología , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Neovascularización Coroidal/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Masculino , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/patología , Oftalmopatías/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Neovascularización Patológica , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo
11.
Opt Express ; 32(8): 13918-13931, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859350

RESUMEN

Laser-scanning confocal hyperspectral microscopy is a powerful technique to identify the different sample constituents and their spatial distribution in three-dimensional (3D). However, it suffers from low imaging speed because of the mechanical scanning methods. To overcome this challenge, we propose a snapshot hyperspectral confocal microscopy imaging system (SHCMS). It combined coded illumination microscopy based on a digital micromirror device (DMD) with a snapshot hyperspectral confocal neural network (SHCNet) to realize single-shot confocal hyperspectral imaging. With SHCMS, high-contrast 160-bands confocal hyperspectral images of potato tuber autofluorescence can be collected by only single-shot, which is almost 5 times improvement in the number of spectral channels than previously reported methods. Moreover, our approach can efficiently record hyperspectral volumetric imaging due to the optical sectioning capability. This fast high-resolution hyperspectral imaging method may pave the way for real-time highly multiplexed biological imaging.

12.
FASEB J ; 37(6): e22932, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115746

RESUMEN

Glutaredoxins (Grxs) are ubiquitous antioxidant proteins involved in many molecular processes to protect cells against oxidative damage. Here, we study the roles of Grxs in the pathogenicity of Toxoplasma gondii. We show that Grxs are localized in the mitochondria (Grx1), cytoplasm (Grx2), and apicoplast (Grx3, Grx4), while Grx5 had an undetectable level of expression. We generated Δgrx1-5 mutants of T. gondii type I RH and type II Pru strains using CRISPR-Cas9 system. No significant differences in the infectivity were detected between four Δgrx (grx2-grx5) strains and their respective wild-type (WT) strains in vitro or in vivo. Additionally, no differences were detected in the production of reactive oxygen species, total antioxidant capacity, superoxide dismutase activity, and sensitivity to external oxidative stimuli. Interestingly, RHΔgrx1 or PruΔgrx1 exhibited significant differences in all the investigated aspects compared to the other grx2-grx5 mutant and WT strains. Transcriptome analysis suggests that deletion of grx1 altered the expression of genes involved in transport and metabolic pathways, signal transduction, translation, and obsolete oxidation-reduction process. The data support the conclusion that grx1 supports T. gondii resistance to oxidative killing and is essential for the parasite growth in cultured cells and pathogenicity in mice and that the active site CGFS motif was necessary for Grx1 activity.


Asunto(s)
Antioxidantes , Toxoplasma , Animales , Ratones , Glutarredoxinas/genética , Toxoplasma/genética , Secuencia de Aminoácidos , Virulencia , Oxidación-Reducción , Estrés Oxidativo
13.
Br J Dermatol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820210

RESUMEN

BACKGROUND: Hypertrophic scar is a disease of abnormal skin fibrosis caused by excessive fibroblast proliferation, and existing drugs cannot achieve satisfactory therapeutic effects. OBJECTIVES: This study aimed to explore the molecular pathogenesis of hypertrophic scars and screen effective drugs for hypertrophic scars. METHODS: Existing human hypertrophic scar RNA sequencing data were utilized to search for hypertrophic scar-related gene modules and key genes through weighted gene co-expression network analysis (WGCNA). Candidate compounds were screened in a compound library. Potential drugs were screened by molecular docking and verified in human hypertrophic scar fibroblasts and a mouse mechanical force hypertrophic scar model. RESULTS: WGCNA showed that hypertrophic scar-associated gene modules influence focal adhesion, transforming growth factor ß (TGF-ß) signaling pathway, and other biological pathways. Integrin ß1 (ITGB1) is the hub protein. Among the candidate compounds obtained by computer virtual screening and molecular docking, crizotinib, sorafenib, and SU11274 can inhibit the proliferation and migration of human hypertrophic scar fibroblasts and pro-fibrotic gene expression. Crizotinib had the best effect on hypertrophic scar attenuation in mouse models. At the same time, mouse ITGB1 small interfering RNA (siRNA) can also inhibit mouse scar hyperplasia. CONCLUSIONS: ITGB1 and TGF-ß signaling pathways are important for hypertrophic scar formation. Crizotinib could serve as a potential drug for hypertrophic scars.

14.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642078

RESUMEN

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Asunto(s)
Cordyceps , Cordyceps/genética , Genes del Tipo Sexual de los Hongos , Fitomejoramiento , Adenosina , Esporas Fúngicas/genética
15.
Arch Microbiol ; 206(4): 141, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441685

RESUMEN

A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).


Asunto(s)
Bacterias , Ácido Succínico , Anaerobiosis , Filogenia , Succinatos , ADN
16.
Pediatr Res ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438553

RESUMEN

BACKGROUND: To facilitate the identification of less common clinical phenotypes of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) in children. METHODS: We retrospectively reviewed medical records of 236 patients with MOGAD. The following phenotypes were considered to be typical for MOGAD: ADEM, ON, TM, and NMOSD. Less common onset clinical phenotypes were screened out; their clinical and magnetic resonance imaging (MRI), diagnosis, treatment, and prognosis were summarized and analyzed. RESULTS: 16 cases (6.8%) presented as cortical encephalitis, with convulsions, headache, and fever as the main symptoms. 15 cases were misdiagnosed in the early period. 13 cases (5.5%) showed the overlapping syndrome of MOGAD and anti-N-methyl-D aspartate receptor encephalitis (MNOS), with seizures (92.3%) being the most common clinical symptom. 11 cases (84.6%) showed relapses. The cerebral leukodystrophy-like phenotype was present in seven cases (3.0%), with a recurrence rate of 50%. Isolated seizures without any findings on MRI phenotype was present in three cases (1.3%), with the only clinical symptom being seizures of focal origin. Three cases (1.3%) of aseptic meningitis phenotype presented with prolonged fever. CONCLUSION: 40/236 (16.9%) of children with MOGAD had less common phenotypes. Less common clinical phenotypes of pediatric MOGAD are susceptible to misdiagnosis and deserve more attention. IMPACT: This is the first comprehensive analysis and summary of all less commonl clinical phenotypes of MOGAD in children, while previous studies have only focused on a specific phenotype or case reports. We analyzed the characteristics of MOGAD in children and further revealed the reasons why these less common clinical phenotypes are prone to misdiagnosis and deserve more attention. Our research on treatment has shown that early detection of MOG antibodies and early treatment are of great significance for improving the prognosis of these patients.

17.
Cancer Control ; 31: 10732748241257142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769028

RESUMEN

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , ARN Circular , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , ARN Circular/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Proliferación Celular/genética , Línea Celular Tumoral , Femenino , Ratones , Animales , Movimiento Celular/genética , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38805027

RESUMEN

Strain S30A2T, isolated from the acid mine drainage sediment of Mengzi Copper Mine, Yunnan, is proposed to represent a novel species of the sulphur-oxidizing genus Acidithiobacillus. Cells were Gram-stain-negative, non-endospore forming, highly motile with one or two monopolar flagella and rod-shaped. The strain was mesophilic, growing at 30-50 °C (optimum, 38 °C), acidophilic, growing at pH 2.0-4.5 (optimum, pH 2.5), and tolerant of 0-4 % (w/v; 684 mol l-1) NaCl. The 16S rRNA gene-based sequence analysis showed that strain S30A2T belongs to the genus Acidithiobacillus and shows the largest similarity of 96.6 % to the type strain Acidithiobacillus caldus KUT. The genomic DNA G+C content of strain S30A2T was 59.25 mol%. The average nucleotide identity ANIb and ANIm values between strain S30A2T and A. caldus KUT were 70.95 and 89.78 %, respectively and the digital DNA-DNA hybridization value was 24.9 %. Strain S30A2T was strictly aerobic and could utilize elementary sulphur and tetrathionate to support chemolithotrophic growth. The major cellular fatty acid of S30A2T was C19 : 1ω7c. The respiratory quinones were ubiquinone-8 and ubiquinone-7. Based upon its phylogenetic, genetic, phenotypic, physiologic and chemotaxonomic characteristics, strain S30A2T is considered to represent a novel species of the genus Acidithiobacillus, for which the name Acidithiobacillus acidisediminis sp. nov. is proposed. The type strain is S30A2T (=CGMCC 1.17059T=KCTC 72580T).


Asunto(s)
Acidithiobacillus , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Minería , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Azufre , ARN Ribosómico 16S/genética , Azufre/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/análisis , Sedimentos Geológicos/microbiología , Acidithiobacillus/clasificación , Acidithiobacillus/genética , Acidithiobacillus/aislamiento & purificación , China , Oxidación-Reducción , Crecimiento Quimioautotrófico , Ubiquinona , Cobre/metabolismo
19.
Paediatr Perinat Epidemiol ; 38(2): 130-141, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168744

RESUMEN

BACKGROUND: Little is known about the long-term trends of preterm birth rates in China and their geographic variation by province. OBJECTIVES: To estimate the annual spatial-temporal distribution of preterm birth rates in China by province from 1990 to 2020. DATA SOURCES: We searched PubMed, EMBASE, Web of Science, CNKI, WANFANG and VIP from January 1990 to September 2023. STUDY SELECTION AND DATA EXTRACTION: Studies that provided data on preterm births in China after 1990 were included. Data were extracted following the Guidelines for Accurate and Transparent Health Estimates Reporting. SYNTHESIS: We assessed the quality of each survey using a 9-point checklist. We estimated the annual preterm birth risk by province using Bayesian multilevel logistic regression models considering potential socioeconomic, environmental, and sanitary predictors. RESULTS: Based on 634 survey data from 343 included studies, we found a gradual increase in the preterm birth risk in most provinces in China since 1990, with an average annual increase of 0.7% nationally. However, the preterm birth rates in Inner Mongolia, Hubei, and Fujian Province showed a decline, while those in Sichuan were quite stable since 1990. In 2020, the estimates of preterm birth rates ranged from 2.9% (95% Bayesian credible interval [BCI] 2.1, 3.8) in Inner Mongolia to 8.5% (95% BCI 6.6, 10.9) in Jiangxi, with the national estimate of 5.9% (95% BCI 4.3, 8.1). Specifically, some provinces were identified as high-risk provinces for either consistently high preterm birth rates (e.g. Jiangxi) or relatively large increases (e.g. Shanxi) since 1990. CONCLUSIONS: This study provides annual information on the preterm birth risk in China since 1990 and identifies high-risk provinces to assist in targeted control and intervention for this health issue.


Asunto(s)
Nacimiento Prematuro , Femenino , Recién Nacido , Humanos , Nacimiento Prematuro/epidemiología , Teorema de Bayes , China/epidemiología , Tasa de Natalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA