Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 155(3): 558-568, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554129

RESUMEN

In populations in China, colorectal cancer (CRC) screening can be mainly accessed through organized screening, opportunistic screening, and physical examination. This screening intervention is found to be effective but the exact coverage rate is difficult to measure. Based on data from published articles, official websites, and available program reports, the screening coverage rate and related indicators were quantified. A rapid review was then conducted to estimate the overall and the breakdown coverage rates of the sub-type screening services, by leveraging the numbers of articles and the by-type median sample sizes. Up to 2020, two central government-funded and four provincial/municipal-level organized CRC screening programs have been initiated and included in this analysis. For populations aged 40-74, the estimated coverage rate of organized programs in China was 2.7% in 2020, and the 2-year cumulative coverage rate in 2019-2020 was 5.3% and the 3-year cumulative coverage rate in 2018-2020 was 7.7%. The corresponding coverage rates of 50-74-year-olds were estimated to be 3.4%, 7.1%, and 10.3%, respectively. Based on the rapid review approach, the overall screening coverage rate for 40-74 years, considering organized screening programs, opportunistic screening, and physical examinations, was then estimated to be 3.0% in China in 2020. However, comparing the findings of this study with the number of health check-ups reported in the local national health statistics yearbooks suggests that the number of CRC physical examinations may be underestimated in this study. The findings suggest that further efforts are needed to improve population access to CRC screening in China. Furthermore, evidence for access to opportunistic CRC screening and physical examination is limited, and more quantitative investigation is needed.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Accesibilidad a los Servicios de Salud , Humanos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Detección Precoz del Cáncer/estadística & datos numéricos , Detección Precoz del Cáncer/métodos , China/epidemiología , Persona de Mediana Edad , Anciano , Adulto , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Femenino , Masculino , Tamizaje Masivo/estadística & datos numéricos , Tamizaje Masivo/métodos
2.
Langmuir ; 40(19): 10217-10227, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38688028

RESUMEN

The temperature dependence of the dynamic contact angles (DCAs) of water on a metallic surface remains unclear, especially under elevated pressures. Here in this work, the advancing and receding contact angles (RCAs), as well as the contact angle hysteresis (CAH), of water on stainless-steel 316 (SS316) surfaces were studied using the dynamic sessile drop method for temperatures up to 300 °C and pressures up to 10 MPa. It was found that the temperature dependence of the DCAs exhibits a different pattern as compared to the piecewise linear decline of static contact angles. The advancing contact angle (ACA) remains nearly constant and does not decrease until the temperature becomes close to the saturated temperature. The decrease in ACA is attributed to evaporation, which reduces the advancement of energy barrier. The RCA linearly declines below 120 °C and remains stable above 120 °C. The increasing temperature enhances the pinning effect and changes the droplet receding mode. Under all pressures tested, the CAH demonstrates a "increase-constant-decrease" trilinear relationship with temperature. Furthermore, the mean solid surface entropy and solid-gas interfacial tension of SS316 were estimated to be 0.1152 mJ/(m2·°C) and 61.49 mJ/m2, respectively.

3.
Plant Cell Rep ; 42(1): 17-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36224499

RESUMEN

KEY MESSAGE: Rice glycosyltransferase gene UGT2 was identified to play a crucial role in salt tolerance. The transcription factor OsbZIP23 was demonstrated to regulate the UGT2 expression under stress conditions. UDP-glycosyltransferases (UGTs) play key roles in modulating plant responses to environmental challenges. In this study, we characterized a novel glycosyltransferase, UGT2, which plays an important role in salt stress responses in rice (Oryza sativa L). We found that seedlings overexpressing UGT2 exhibited better growth than wild type in shoot and root under hydroponic culture with salt stress treatments, while ugt2ko mutant lines suffered much more growth inhibition. When the soil-grown UGT2 transgenic plants were subjected to salt stress, we also found that ugt2ko mutant lines were severely withered and most of them died, while the overexpression lines grew well and had higher survival rate. Compared with wild-type plants, UGT2 overexpression greatly increased the expression levels of the reactive oxygen species scavenging genes and stress-responsive genes. Furthermore, the upstream regulatory mechanism of the UGT2 gene was identified and we found that a bZIP transcription factor, OsbZIP23, can bind to the UGT2 promoter and enhance the UGT2 transcription levels. This work reveals that OsbZIP23-UGT2 module may play a major role in regulating the salt stress tolerance in rice.


Asunto(s)
Oryza , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tolerancia a la Sal/genética , Oryza/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(12): 6910-6917, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152121

RESUMEN

Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Indoles/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Indoles/química , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Plantones , Temperatura
5.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4731-4737, 2023 Sep.
Artículo en Zh | MEDLINE | ID: mdl-37802812

RESUMEN

This study aimed to analyze the effect of matrine on tumor necrosis factor-α(TNF-α)-induced inflammatory response in human umbilical vein endothelial cells(HUVECs) and explore whether the underlying mechanism was related to the miR-25-3p-mediated Krüppel-like factor 4(Klf4) pathway. The HUVEC cell inflammation model was induced by TNF-α stimulation. After 24 or 48 hours of incubation with different concentrations of matrine(0.625, 1.25, and 2.5 mmol·L~(-1)), CCK-8 assay was used to detect cell proliferation. After treatment with 2.5 mmol·L~(-1) matrine for 48 h, the expression of TNF-α, interleukin-6(IL-6), interleukin-1ß(IL-1ß), and Klf4 mRNA and miR-25-3p was detected by real-time fluorescence-based quantitative PCR, and the protein expression of TNF-α, IL-6, IL-1ß, and Klf4 was detected by Western blot. The anti-miR-25-3p was transfected into HUVECs, and the effect of anti-miR-25-3p on TNF-α-induced cell proliferation and inflammatory factors was detected by the above method. The cells were further transfected with miR-25-3p and incubated with matrine to detect the changes in proliferation and expression of related inflammatory factors, miR-25-3p, and Klf4. The targeting relationship between miR-25-3p and Klf4 was verified by bioinformatics analysis and dual luciferase reporter gene assay. The results displayed that matrine could inhibit TNF-α-induced HUVEC proliferation, decrease the mRNA and protein expression of TNF-α, IL-6, and IL-1ß, increase the mRNA and protein expression of Klf4, and reduce the expression of miR-25-3p. Bioinformatics analysis showed that there were specific complementary binding sites between miR-25-3p and Klf4 sequences. Dual luciferase reporter gene assay confirmed that miR-25-3p negatively regulated Klf4 expression in HUVECs by targeting. The inhibition of miR-25-3p expression can reduce TNF-α-induced cell proliferation and mRNA and protein expression of TNF-α, IL-6, and IL-1ß. MiR-25-3p overexpression could reverse the effect of matrine on TNF-α-induced cell proliferation and the mRNA and protein expression of TNF-α, IL-6, IL-1ß, and Klf4. This study shows that matrine inhibits the inflammatory response induced by TNF-α in HUVECs through miR-25-3p-mediated Klf4 pathway.


Asunto(s)
MicroARNs , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Matrinas , Interleucina-6/genética , Transducción de Señal , Antagomirs , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Luciferasas/metabolismo , Luciferasas/farmacología , ARN Mensajero , Apoptosis
6.
Plant J ; 107(1): 149-165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33866633

RESUMEN

Recent studies have shown that global metabolic reprogramming is a common event in plant innate immunity; however, the relevant molecular mechanisms remain largely unknown. Here, we identified a pathogen-induced glycosyltransferase, UGT73C7, that plays a critical role in Arabidopsis disease resistance through mediating redirection of the phenylpropanoid pathway. Loss of UGT73C7 function resulted in significantly decreased resistance to Pseudomonas syringae pv. tomato DC3000, whereas constitutive overexpression of UGT73C7 led to an enhanced defense response. UGT73C7-activated immunity was demonstrated to be dependent on the upregulated expression of SNC1, a Toll/interleukin 1 receptor-type NLR gene. Furthermore, in vitro and in vivo assays indicated that UGT73C7 could glycosylate p-coumaric acid and ferulic acid, the upstream metabolites in the phenylpropanoid pathway. Mutations that lead to the loss of UGT73C7 enzyme activities resulted in the failure to induce SNC1 expression. Moreover, glycosylation activity of UGT73C7 resulted in the redirection of phenylpropanoid metabolic flux to biosynthesis of hydroxycinnamic acids and coumarins. The disruption of the phenylpropanoid pathway suppressed UGT73C7-promoted SNC1 expression and the immune response. This study not only identified UGT73C7 as an important regulator that adjusts phenylpropanoid metabolism upon pathogen challenge, but also provided a link between phenylpropanoid metabolism and an NLR gene.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/fisiología , Glicosiltransferasas/metabolismo , Inmunidad de la Planta/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Ácidos Cumáricos/metabolismo , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/inmunología , Interacciones Huésped-Patógeno/fisiología , Ácidos Isonicotínicos/farmacología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Pseudomonas syringae/patogenicidad
7.
Popul Health Metr ; 20(1): 19, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207752

RESUMEN

BACKGROUND: Most cancer disability-adjusted life year (DALY) studies worldwide have used broad, generic disability weights (DWs); however, differences exist among populations and types of cancers. Using breast cancer as example, this study aimed to estimate the population-level DALYs in females in China and the impact of screening as well as applying local DWs. METHODS: Using multisource data, a prevalence-based model was constructed. (1) Overall years lived with disability (YLDs) were estimated by using numbers of prevalence cases, stage-specific proportions, and local DWs for breast cancer. Numbers of females and new breast cancer cases as well as local survival rates were used to calculate the number of prevalence cases. (2) Years of life lost (YLLs) were estimated using breast cancer mortality rates, female numbers and standard life expectancies. (3) The prevalence of and mortality due to breast cancer and associated DALYs from 2020 to 2030 were predicted using Joinpoint regression. (4) Assumptions considered for screening predictions included expanding coverage, reducing mortality due to breast cancer and improving early-stage proportion for breast cancer. RESULTS: In Chinese females, the estimated number of breast cancer DALYs was 2251.5 thousand (of 17.3% were YLDs) in 2015, which is predicted to increase by 26.7% (60.3% among those aged ≥ 65 years) in 2030 (2852.8 thousand) if the screening coverage (25.7%) stays unchanged. However, if the coverage can be achieved to 40.7% in 2030 (deduced from the "Healthy China Initiative"), DALYs would decrease by 1.5% among the screened age groups. Sensitivity analyses found that using local DWs would change the base-case values by ~ 10%. CONCLUSION: Estimates of DALYs due to breast cancer in China were lower (with a higher proportion of YLDs) than Global Burden of Disease Study numbers (2527.0 thousand, 8.2% were YLDs), suggesting the importance of the application of population-specific DWs. If the screening coverage remains unchanged, breast cancer-caused DALYs would continue to increase, especially among elderly individuals.


Asunto(s)
Neoplasias de la Mama , Anciano , Neoplasias de la Mama/epidemiología , China/epidemiología , Años de Vida Ajustados por Discapacidad , Detección Precoz del Cáncer , Femenino , Carga Global de Enfermedades , Humanos , Prevalencia , Años de Vida Ajustados por Calidad de Vida
8.
Cost Eff Resour Alloc ; 20(1): 36, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870941

RESUMEN

BACKGROUND: Benchmark data on the population-level economic burden are critical to inform policymakers about liver cancer control. However, comprehensive data in China are currently limited. METHODS: A prevalence-based approach from a societal perspective was used to quantify the annual economic burden of liver cancer in China from 2019 to 2030. Detailed per-case data on medical/non-medical expenditure and work-loss days were extracted from a multicenter survey. The numbers/rates of new/prevalent cases and deaths, survival, and population-related parameters were extracted from the Global Burden of Disease 2019 and the literature. All expenditure data were reported in both 2019 Chinese Yuan (CNY) and United States dollar (US$, for main estimations). RESULT: The overall economic burden of liver cancer was estimated at CNY76.7/US$11.1 billion in China in 2019 (0.047% of the local GDP). The direct expenditure was CNY21.6/US$3.1 billion, including CNY19.7/US$2.9 billion for medical expenditure and CNY1.9/US$0.3 billion for non-medical expenditure. The indirect cost was CNY55.1/US$8.0 billion (71.8% of the overall burden), including CNY3.0/US$0.4 billion due to disability and CNY52.0/US$7.5 billion due to premature death. The total burden would increase to CNY84.2/US$12.2 billion, CNY141.7/US$20.5 billion, and CNY234.3/US$34.0 billion in 2020, 2025, and 2030, accounting for 0.102%, 0.138%, and 0.192% of China's GDP, respectively. However, if China achieves the goals of Healthy China 2030 or the United Nations' Sustainable Development Goals for non-communicable diseases, the burden in 2030 would be < CNY144.4/US$20.9 billion. CONCLUSIONS: The population-level economic burden of liver cancer in China is currently substantial and will consistently increase in the future. Sustainable efforts in primary and secondary interventions for liver cancer need to be further strengthened.

9.
Zhongguo Zhong Yao Za Zhi ; 47(2): 492-498, 2022 Jan.
Artículo en Zh | MEDLINE | ID: mdl-35178994

RESUMEN

This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.


Asunto(s)
Aterosclerosis , MicroARNs , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Lipoproteínas LDL/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Saponinas , Transducción de Señal , Triterpenos
10.
Lipids Health Dis ; 20(1): 178, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34895241

RESUMEN

BACKGROUND: Cordyceps militaris is cultured widely as an edible mushroom and accumulating evidence in mice have demonstrated that the polysaccharides of Cordyceps species have lipid-lowering effects. However, lipid metabolism in mice is significantly different from that in humans, making a full understanding of the mechanisms at play critical. METHODS: After 5 months, the hamsters were weighed and sampled under anesthesia after overnight fasting. The lipid-lowering effect and mechanisms of the polysaccharide CM1 was investigated by cellular and molecular technologies. Furthermore, the effect of the polysaccharide CM1 (100 µg/mL) on inhibiting adipocyte differentiation was investigated in vitro. RESULTS: CM1, a polysaccharide from C. militaris, significantly decreased plasma total cholesterol, triglyceride and epididymal fat index in LDLR(+/-) hamsters, which have a human-like lipid profile. After 5 months' administration, CM1 decreased the plasma level of apolipoprotein B48, modulated the expression of key genes and proteins in liver, small intestine, and epididymal fat. CM1 also inhibited preadipocyte differentiation in 3T3-L1 cells by downregulating the key genes involved in lipid droplet formation. CONCLUSIONS: The polysaccharide CM1 lowers lipid and adipocyte differentiation by several pathways, and it has potential applications for hyperlipidemia prevention.


Asunto(s)
Adipocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cordyceps/química , Polisacáridos Fúngicos/farmacología , Hiperlipidemias/tratamiento farmacológico , Receptores de LDL/metabolismo , Animales , Cricetinae , Polisacáridos Fúngicos/uso terapéutico , Immunoblotting , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Plant Mol Biol ; 102(4-5): 389-401, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31894456

RESUMEN

KEY MESSAGE: This study revealed that the Arabidopsis UGT75B1 plays an important role in modulating ABA activity by glycosylation when confronting stress environments. The cellular ABA content and activity can be tightly controlled in several ways, one of which is glycosylation by family 1 UDP-glycosyltransferases (UGTs). Previous analysis has shown UGT75B1 activity towards ABA in vitro. However, the biological role of UGT75B1 remains to be elucidated. Here, we characterized the function of UGT75B1 in abiotic stress responses via ABA glycosylation. GUS assay and qRT-PCR indicated that UGT75B1 is significantly upregulated by adverse conditions, such as osmotic stress, salinity and ABA. Overexpression of UGT75B1 in Arabidopsis leads to higher seed germination rates and seedling greening rates upon exposure to salt and osmotic stresses. In contrast, the big UGT75B1 overexpression plants are more sensitive under salt and osmotic stresses. Additionally, the UGT75B1 overexpression plants showed larger stomatal aperture and more water loss under drought condition, which can be explained by lower ABA levels examined in UGT75B1 OE plants in response to water deficit conditions. Consistently, UGT75B1 ectopic expression leads to downregulation of many ABA-responsive genes under stress conditions, including ABI3, ABI5 newly germinated seedlings and RD29A, KIN1, AIL1 in big plants. In summary, our results revealed that the Arabidopsis UGT75B1 plays an important role in coping with abiotic stresses via glycosylation of ABA.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/fisiología , Glicosiltransferasas/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catálisis , Sequías , Genes de Plantas , Germinación , Glucosiltransferasas/genética , Glicosilación , Glicosiltransferasas/genética , Presión Osmótica , Plantas Modificadas Genéticamente/genética , Salinidad , Plantones/genética , Plantones/fisiología , Cloruro de Sodio , Factores de Transcripción/genética , Factores de Transcripción/fisiología
12.
Plant Physiol ; 180(4): 2167-2181, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962291

RESUMEN

Plant systemic acquired resistance (SAR) provides an efficient broad-spectrum immune response to pathogens. SAR involves mobile signal molecules that are generated by infected tissues and transported to systemic tissues. Methyl salicylate (MeSA), a molecule that can be converted to salicylic acid (SA), is an essential signal for establishing SAR, particularly under a short period of exposure to light after pathogen infection. Thus, the control of MeSA homeostasis is important for an optimal SAR response. Here, we characterized a uridine diphosphate-glycosyltransferase, UGT71C3, in Arabidopsis (Arabidopsis thaliana), which was induced mainly in leaf tissue by pathogens including Pst DC3000/avrRpt2 (Pseudomonas syringae pv tomato strain DC3000 expressing avrRpt2). Biochemical analysis indicated that UGT71C3 exhibited strong enzymatic activity toward MeSA to form MeSA glucosides in vitro and in vivo. After primary pathogen infection by Pst DC3000/avrRpt2, ugt71c3 knockout mutants exhibited more powerful systemic resistance to secondary pathogen infection than that of wild-type plants, whereas systemic resistance in UGT71C3 overexpression lines was compromised. In agreement, after primary infection of local leaves, ugt71c3 knockout mutants accumulated significantly more systemic MeSA and SA than that in wild-type plants. whereas UGT71C3 overexpression lines accumulated less. Our results suggest that MeSA glucosylation by UGT71C3 facilitates negative regulation of the SAR response by modulating homeostasis of MeSA and SA. This study unveils further SAR regulation mechanisms and highlights the role of glucosylation of MeSA and potentially other systemic signals in negatively modulating plant systemic defense.


Asunto(s)
Arabidopsis/metabolismo , Salicilatos/metabolismo , Ácido Salicílico/aislamiento & purificación , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Pseudomonas syringae/patogenicidad , Transducción de Señal
13.
BMC Cardiovasc Disord ; 20(1): 191, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321424

RESUMEN

BACKGROUND: Pulmonary vein stenosis (PVS) after radiofrequency ablation for non-valvular atrial fibrillation (AF) is an uncommon but serious complication. PVS stenting can rapidly restore pulmonary flow and improve symptoms with long-term low incidence of restenosis. However, high risk of thrombosis remains if AF is recurrent, especially for CHA2DS2-VASc > 2. CASE PRESENTATION: A 67-year-old man with diabetes, hypertension and a history of stroke underwent radiofrequency pulmonary vein isolation for persistent AF 1 year ago. Six months later he developed recurrent respiratory infection and massive hemoptysis. Computed tomography pulmonary angiography revealed severe left pulmonary vein stenosis. Simultaneous percutaneous PVS stenting and left atrial appendage occlusion were performed to resolve recurrent hemoptysis and prevent stroke. The clinical follow-up indicated a good short and mid-term result with significant improvement of symptoms. CONCLUSIONS: Simultaneous PVS stenting and left atrial appendage occlusion is feasible and effective in patients with recurrence of AF and hemoptysis induced by radiofrequency ablation for AF.


Asunto(s)
Angioplastia de Balón/instrumentación , Apéndice Atrial , Fibrilación Atrial/cirugía , Cateterismo Cardíaco/instrumentación , Ablación por Catéter/efectos adversos , Hemoptisis/etiología , Estenosis de Vena Pulmonar/terapia , Stents , Anciano , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/fisiopatología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Humanos , Masculino , Recurrencia , Estenosis de Vena Pulmonar/diagnóstico por imagen , Estenosis de Vena Pulmonar/etiología , Resultado del Tratamiento
14.
Plant Physiol ; 176(4): 3103-3119, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483147

RESUMEN

Salicylic acid (SA) plays a crucial role in plant innate immunity. The deployment of SA-associated immune responses is primarily affected by SA concentration, which is determined by a balance between SA biosynthesis and catabolism. However, the mechanisms regulating SA homeostasis are poorly understood. In this study, we characterized a unique UDP-glycosyltransferase, UGT76D1, which plays an important role in SA homeostasis and associated immune responses in Arabidopsis (Arabidopsis thaliana). Expression of UGT76D1 was induced by treatment with both the pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 and SA. Overexpression of UGT76D1 resulted in high SA accumulation, significant up-regulation of pathogen-related genes, and a hypersensitive response (HR)-like lesion mimic phenotype. This HR-like phenotype was not observed following UGT76D1 overexpression in SA-deficient NahG transgenic or sid2 plants, suggesting that the phenotype is SA dependent. Biochemical assays showed that UGT76D1 glycosylated 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), the major catabolic forms of SA, to their Glc and Xyl conjugates in vitro and in vivo. Moreover, in a mutant background blocked in the formation of 2,3-DHBA and 2,5-DHBA, UGT76D1 overexpression did not cause a HR-like lesion mimic phenotype. Following infection with Pst DC3000, UGT76D1 knockout mutants displayed a delayed immune response, with reduced levels of DHBA glycosides and SA, and down-regulated SA synthase expression. By contrast, UGT76D1 overexpression lines showed an enhanced immune response and increased SA biosynthesis before and after pathogen infection. Thus, we propose that UGT76D1 plays an important role in SA homeostasis and plant immune responses by facilitating glycosylation of dihydroxybenzoic acids.


Asunto(s)
Arabidopsis/metabolismo , Gentisatos/metabolismo , Hidroxibenzoatos/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Homeostasis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , Ácido Salicílico/farmacología
15.
Int Heart J ; 60(4): 983-985, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31257331

RESUMEN

Infective endocarditis (IE) is a lethal complication inpatients with congenital heart disease. We report a case of percutaneous implanted pulmonary valve IE in a 49-year-old female. She underwent a previous surgery for tetralogy of Fallot with transannular patching of the right ventricular outflow tractat the age of 18 years. Echocardiography showed chronic moderate to severe pulmonary regurgitation with right heart enlargement. She underwent transcatheter pulmonary valve implantation with a 26 mm Venus-P valve (Venus Medtech, Shanghai, China) in order to release pulmonary insufficiency. Two months after implantation, she presented with recurrent chills and febrile for one week, and percutaneous implanted pulmonary valve IE was diagnosed. According to the antibiotic susceptibility test, she was given penicillin and gentamycin. At 12 months follow-up, TTE showed vegetation completely disappeared and the valve functioned normally. The patient recovered uneventfully without any complications like recurrent IE.


Asunto(s)
Cateterismo Cardíaco/efectos adversos , Endocarditis/etiología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Infecciones Relacionadas con Prótesis/etiología , Insuficiencia de la Válvula Pulmonar/cirugía , Válvula Pulmonar/cirugía , Antibacterianos/uso terapéutico , Ecocardiografía , Endocarditis/diagnóstico , Endocarditis/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Válvula Pulmonar/diagnóstico por imagen , Insuficiencia de la Válvula Pulmonar/diagnóstico , Tomografía Computarizada por Rayos X
16.
Plant J ; 89(1): 85-103, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27599367

RESUMEN

The plant family 1 UDP-glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR-Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE-binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP-rhamnose to cyanidin and cyanidin 3-O-glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Sequías , Glicosiltransferasas/metabolismo , Cloruro de Sodio/farmacología , Aclimatación/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glicosiltransferasas/genética , Mutación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico , Uridina Difosfato/metabolismo
17.
Ann Bot ; 122(7): 1203-1217, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29982479

RESUMEN

Background and Aims: Nowadays, the plant family 1 glycosyltransferases (UGTs) are attracting more and more attention since members of this family can improve the properties of secondary metabolites and have significantly enriched the chemical species in plants. Over the past decade, most studies on UGTs have been conducted in Arabidopsis thaliana and they were proved to play diverse roles during the plant life cycle. The Zea mays (maize) GT1 family comprises a large number of UDP-glycosyltransferase (UGT) members. However, their enzyme activities and the biological functions are rarely revealed. In this study, a maize flavonol glycosyltransferase, UFGT2, is identified and its biological role is characterized in detail. Methods: The UFGT2 enzyme activity, the flavonol and glycoside levels in planta were examined by high- performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). The functions of UFGT2 in modifying flavonols, mediating flavonol accumulation and improving stress tolerance were analysed using two ufgt2 mutants and transgenic arabidopsis plants. Key Results: By in vitro enzyme assay, the maize UFGT2 was found to show strong activity towards two flavonols: kaemferol and quercetin. Two ufgt2 knockout mutants, Mu689 and Mu943, exhibited obvious sensitivity to salt and drought stresses. The endogenous quercetin and kaempferol glycosides, as well as the total flavonol levels were found to be substantially decreased in the two ufgt2 mutants, with declined H2O2-scavenging capacity. In contrast, ectopic expression of UFGT2 in arabidopsis led to increased flavonol contents and enhanced oxidative tolerance. Moreover, expression of typical stress-related genes in arabidopsis and maize were affected in UFGT2 overexpression plants or knockout mutants in response to abiotic stresses. UFGT2 was also transferred into the arabidopsis ugt78d2 mutant and it was found to recover the deficient flavonol glycoside pattern in the ugt78d2 mutant, which confirmed its catalysing activity in planta. Conclusion: It is demonstrated in our study that a maize glycosyltransferase, UFGT2, involved in modifying flavonols, contributes to improving plant tolerance to abiotic stresses.


Asunto(s)
Aclimatación/genética , Sequías , Flavonoles/metabolismo , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Estrés Salino/fisiología , Zea mays/fisiología , Glicosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundario , Zea mays/genética
18.
Heart Vessels ; 33(7): 722-732, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29445930

RESUMEN

Dilated cardiomyopathy (DCM) is a common primary myocardial disease leading to congestive heart failure, arrhythmia and sudden cardiac death. Increasing studies demonstrate substantial genetic determinants for DCM. Nevertheless, DCM is of substantial genetic heterogeneity, and the genetic basis for DCM in most patients remains unclear. The present study was sought to investigate the association of a genetic variant in the ZBTB17 gene with DCM. A cohort of 158 unrelated patients with idiopathic DCM and a total of 230 unrelated, ethnically matched healthy individuals used as controls were recruited. The coding exons and splicing boundaries of ZBTB17 were sequenced in all study participants. The functional effect of the mutant ZBTB17 was characterized by a dual-luciferase reporter assay system. A novel heterozygous ZBTB17 mutation, p.E243X, was discovered in an index patient. Genetic scan of the mutation carrier's available relatives showed that the mutation was present in all affected family members but absent in unaffected family members. Analysis of the proband's pedigree revealed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in the 460 control chromosomes. Functional assays demonstrated that the truncated ZBTB17 protein had no transcriptional activity as compared with its wild-type counterpart. This study firstly associates ZBTB17 loss-of-function mutation with enhanced susceptibility to DCM in humans, which provides novel insight into the molecular mechanism underpinning DCM, implying potential implications for genetic counseling and personalized management of DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Predisposición Genética a la Enfermedad , Factores de Transcripción de Tipo Kruppel/genética , Mutación , Cardiomiopatía Dilatada/metabolismo , Análisis Mutacional de ADN , Exones , Femenino , Heterocigoto , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Dedos de Zinc
19.
Plant J ; 88(1): 26-42, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27273756

RESUMEN

Glycosylation of monolignols has been found to be widespread in land plants since the 1970s. However, whether monolignol glycosylation is crucial for cell wall lignification and how it exerts effects are still unknown. Here, we report the identification of a mutant ugt72b1 showing aggravated and ectopic lignification in floral stems along with arrested growth and anthocyanin accumulation. Histochemical assays and thioacidolysis analysis confirmed the enhanced lignification and increased lignin biosynthesis in the ugt72b1 mutant. The loss of UDP-glycosyltransferase UGT72B1 function was responsible for the lignification phenotype, as demonstrated by complementation experiments. Enzyme activity analysis indicated that UGT72B1 could catalyze the glucose conjugation of monolignols, especially coniferyl alcohol and coniferyl aldehyde, which was confirmed by analyzing monolignol glucosides of UGT72B1 transgenic plants. Furthermore, the UGT72B1 gene was strongly expressed in young stem tissues, especially xylem tissues. However, UGT72B1 paralogs, such as UGT72B2 and UGT72B3, had weak enzyme activity toward monolignols and weak expression in stem tissues. Transcriptomic profiling showed that UGT72B1 knockout resulted in extensively increased transcript levels of genes involved in monolignol biosynthesis, lignin polymerization and cell wall-related transcription factors, which was confirmed by quantitative real-time PCR assays. These results provided evidence that monolignol glucosylation catalyzed by UGT72B1 was essential for normal cell wall lignification, thus offering insight into the molecular mechanism of cell wall development and cell wall lignification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucosa/metabolismo , Glicosiltransferasas/metabolismo , Lignina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosiltransferasas/genética
20.
Physiol Plant ; 159(4): 416-432, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27747895

RESUMEN

Glycosyltransferase (GT) family-1, the biggest GT family in plants, typically participates in modification of small molecules and affects many aspects during plant development. In Arabidopsis thaliana, although some UDP glycosyltransferases (UGTs) of family-1 have been functionally characterized, functions of most the UGTs remain unknown or fragmentary. Here, we report data for the Arabidopsis UGT87A2, a stress-regulated GT. We found that UGT87A2 could be dramatically induced by salinity, osmotic stress, drought and ABA. Overexpression of UGT87A2 (87A2OE) leads to accelerated germination and greening, higher survival rate as well as increased root length against abiotic stresses compared with those of wild-type (WT) plants. In addition, we observed lower water loss rate in the 87A2OE plants due to smaller stomatal apertures. The transgenic plants also showed reduced levels of H2 O2 and superoxide under low water status compared with those of WT plants. Consistently, function loss of UGT87A2 in ugt87a2 knockout lines resulted in opposite performances under these conditions. A transcriptome profiling revealed that 121 genes were differentially regulated upon UGT87A2 overexpression, and a large number of stress-induced genes were upregulated in UGT87A2 overexpression plants. Expression of seven genes among them were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), including CPK32, CYP81F2, MYB96, DREB2A, FBS1, PUB23 and RAV2 under both control and stress treatments, and the results greatly validated our transcriptome data. Taken together, our findings support an explicit role of UGT87A2 in adaptation to abiotic stresses.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Glicosiltransferasas/metabolismo , Estrés Fisiológico , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Germinación/efectos de los fármacos , Glicosiltransferasas/genética , Manitol/farmacología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA