Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 81(15): 3187-3204.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34157307

RESUMEN

OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.


Asunto(s)
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidasas/genética , Complejos Multiproteicos/metabolismo , Neovascularización Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animales , Endopeptidasas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Factor 2 de Diferenciación de Crecimiento/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones Mutantes , Mutación , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditaria , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 76(1): 126-137.e7, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31444107

RESUMEN

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains. The entire Met4 pathway, which links cell proliferation with sulfur amino acid metabolism, was significantly affected by K11 chains and selected for mechanistic studies. Previously, we demonstrated that a K48-linked ubiquitin chain represses the transcription factor Met4. Here, we show that efficient Met4 activation requires a K11-linked topology. Mechanistically, our results propose that the K48 chain binds to a topology-selective tandem ubiquitin binding region in Met4 and competes with binding of the basal transcription machinery to the same region. The change to K11-enriched chain architecture releases this competition and permits binding of the basal transcription complex to activate transcription.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Activación Transcripcional , Ubiquitinación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sitios de Unión , Unión Competitiva , Cromatografía Liquida , Regulación Fúngica de la Expresión Génica , Lisina , Mutación , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
3.
Gastroenterology ; 165(3): 746-761.e16, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263311

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is an intrinsic wound-healing response to chronic injury and the major cause of liver-related morbidity and mortality worldwide. However, no effective diagnostic or therapeutic strategies are available, owing to its poorly characterized molecular etiology. We aimed to elucidate the mechanisms underlying liver fibrogenesis. METHODS: We performed a quantitative proteomic analysis of clinical fibrotic liver samples to identify dysregulated proteins. Further analyses were performed on the sera of 164 patients with liver fibrosis. Two fibrosis mouse models and several biochemical experiments were used to elucidate liver fibrogenesis. RESULTS: We identified cathepsin S (CTSS) up-regulation as a central node for extracellular matrix remodeling in the human fibrotic liver by proteomic screening. Increased serum CTSS levels efficiently predicted liver fibrosis, even at an early stage. Secreted CTSS cleaved collagen 18A1 at its C-terminus, releasing endostatin peptide, which directly bound to and activated hepatic stellate cells via integrin α5ß1 signaling, whereas genetic ablation of Ctss remarkably suppressed liver fibrogenesis via endostatin reduction in vivo. Further studies identified macrophages as the main source of hepatic CTSS, and splenectomy effectively attenuated macrophage infiltration and CTSS expression in the fibrotic liver. Pharmacologic inhibition of CTSS ameliorated liver fibrosis progression in the mouse models. CONCLUSIONS: CTSS functions as a novel profibrotic factor by remodeling extracellular matrix proteins and may represent a promising target for the diagnosis and treatment of liver fibrosis.


Asunto(s)
Endostatinas , Proteómica , Ratones , Animales , Humanos , Endostatinas/metabolismo , Endostatinas/farmacología , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Fibrosis , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Matriz Extracelular , Macrófagos/metabolismo
4.
FASEB J ; 37(2): e22724, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583687

RESUMEN

Mitosis entails global and dramatic alterations, such as higher-order chromatin organization disruption, concomitant with global transcription downregulation. Cells reliably re-establishing gene expression patterns upon mitotic exit and maintaining cellular identities remain poorly understood. Previous studies indicated that certain transcription factors (TFs) remain associated with individual loci during mitosis and serve as mitotic bookmarkers. However, it is unclear which regulatory factors remain bound to the compacted mitotic chromosomes. We developed formaldehyde-assisted isolation of regulatory elements-coupled mass spectrometry (FAIRE-MS) that combines FAIRE-based open chromatin-associated protein pull-down and mass spectrometry (MS) to quantify the open chromatin-associated proteome during the interphase and mitosis. We identified 189 interphase and mitosis maintained (IM) regulatory factors using FAIRE-MS and found intrinsically disordered proteins and regions (IDP(R)s) are highly enriched, which plays a crucial role in liquid-liquid phase separation (LLPS) and chromatin organization during the cell cycle. Notably, in these IDP(R)s, we identified mitotic bookmarkers, such as CEBPB, HMGB1, and TFAP2A, and several factors, including MAX, HMGB3, hnRNP A2/B1, FUS, hnRNP D, and TIAL1, which are at least partially bound to the mitotic chromosome. Furthermore, it will be essential to study whether these IDP(R)s through LLPS helps cells transit from mitosis to the G1 phase during the cell cycle.


Asunto(s)
Cromatina , Proteoma , Proteoma/genética , Cromatina/genética , Cromosomas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mitosis , Espectrometría de Masas
5.
J Proteome Res ; 22(4): 1245-1254, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36877145

RESUMEN

Trypsin specifically cleaves the C-terminus of lysine and arginine residues but often fails to cleave modified lysines, such as ubiquitination, therefore resulting in the uncleaved K-ε-GG peptides. Therefore, the cleaved ubiquitinated peptide identification was often regarded as false positives and discarded. Interestingly, unexpected cleavage at the K48-linked ubiquitin chain has been reported, suggesting the latent ability of trypsin to cleave ubiquitinated lysine residues. However, it remains unclear whether other trypsin-cleavable ubiquitinated sites are present. In this study, we verified the ability of trypsin in cleaving K6 and K63 besides K48 chains. The uncleaved K-ε-GG peptide was quickly and efficiently generated during trypsin digestion, whereas cleaved ones were produced with much lower efficiency. Then, the K-ε-GG antibody was proved to efficiently enrich the cleaved K-ε-GG peptides and several published large-scale ubiquitylation datasets were re-analyzed to interrogate the cleaved sequence features. In total, more than 2400 cleaved ubiquitinated peptides were identified in the K-ε-GG and UbiSite antibody-based datasets. The frequency of lysine upstream of the cleaved modified K was significantly enriched. The kinetic activity of trypsin in cleaving ubiquitinated peptides was further elucidated. We suggest that the cleaved K-ε-GG sites with high post-translational modification probability (≥0.75) should be considered as true positives in future ubiquitome analyses.


Asunto(s)
Lisina , Ubiquitina , Lisina/metabolismo , Tripsina/metabolismo , Secuencia de Aminoácidos , Ubiquitina/metabolismo , Ubiquitinación , Péptidos
6.
J Proteome Res ; 22(7): 2281-2292, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37341107

RESUMEN

Quantitative proteomics has emerged as a crucial approach to identifying ubiquitinated substrates to investigate the functions of ubiquitination in cells. In this regard, although the substrate screening of certain enzymes in the ubiquitin system has been based on proteome or ubiquitinome level measurements, the direct comparison of these two approaches has not been determined to date. To quantitatively compare the efficiency and effectiveness of substrate screening from the entire proteomics to the ubiquitinomics filter, we used yeast deubiquitinating enzyme, Ubp7, as an example to evaluate it in this study. A total of 112 potential ubiquitinated substrates were identified from the ubiquitinomics level, whereas only 27 regulated substrates were identified from the entire proteomic screening, demonstrating the increased efficiency of ubiquitinomics quantitative analysis. Subsequently, we selected cyclophilin A (Cpr1) protein as an example, which was filtered out at the proteomics level but was a promising candidate according to the ubiquitinomics filter. Additional investigations revealed that Cpr1 possessed a K48-linked ubiquitin chain regulated by Ubp7, which may affect its homeostasis and, consequently, sensitivity to the therapeutic drug cyclosporine (CsA).


Asunto(s)
Ciclofilinas , Proteómica , Ciclofilinas/genética , Enzimas Desubicuitinizantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
7.
J Neurosci ; 41(50): 10356-10364, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785579

RESUMEN

Semantic processing is an amodal process with modality-specific information integrated in supramodal "convergence zones" or "semantic hub" with executive mechanisms that tailor semantic representation in a task-appropriate way. One unsolved question is how frontal control region dynamically interacts with temporal representation region in semantic integration. The present study addressed this issue by using inhibitory double-pulse transcranial magnetic stimulation over the left inferior frontal gyrus (IFG) or left posterior middle temporal gyrus (pMTG) in one of eight 40 ms time windows (TWs) (3 TWs before and 5 TWs after the identification point of speech), when human participants (12 females, 14 males) were presented with semantically congruent or incongruent gesture-speech pairs but merely identified the gender of speech. We found a TW-selective disruption of gesture-speech integration, indexed by the semantic congruency effect (i.e., a cost of reaction time because of semantic conflict), when stimulating the left pMTG in TW1, TW2, and TW7 but when stimulating the left IFG in TW3 and TW6. Based on the timing relationship, we hypothesize a two-stage gesture-speech integration circuit with a pMTG-to-IFG sequential involvement in the prelexical stage for activating gesture semantics and top-down constraining the phonological processing of speech. In the postlexical stage, an IFG-to-pMTG feedback signal might be implicated for the control of goal-directed representations and multimodal semantic unification. Our findings provide new insights into the dynamic brain network of multimodal semantic processing by causally revealing the temporal dynamics of frontal control and temporal representation regions.SIGNIFICANCE STATEMENT Previous research has identified differential functions of left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) in semantic control and semantic representation, respectively, and a causal contribution of both regions in gesture-speech integration. However, it remains largely unclear how the two regions dynamically interact in semantic processing. By using double-pulse transcranial magnetic stimulation to disrupt regional activity at specific time, this study for the first time revealed critical time windows when the two areas were causally involved in integrating gesture and speech semantics. Findings suggest a pMTG-IFG-pMTG neurocircuit loop in gesture-speech integration, which deepens current knowledge and inspires future investigation of the temporal dynamics and cognitive processes of the amodal semantic network.


Asunto(s)
Gestos , Corteza Prefrontal/fisiología , Semántica , Percepción del Habla/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal
8.
J Biol Chem ; 296: 100348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524398

RESUMEN

Sterol homeostasis is tightly controlled by molecules that are highly conserved from yeast to humans, the dysregulation of which plays critical roles in the development of antifungal resistance and various cardiovascular diseases. Previous studies have shown that sterol homeostasis is regulated by the ubiquitin-proteasome system. Two E3 ubiquitin ligases, Hrd1 and Doa10, are known to mediate the proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase Hmg2 and squalene epoxidase Erg1 with accumulation of the toxic sterols in cells, but the deubiquitinases (DUBs) involved are unclear. Here, we screened for DUBs responsible for sterol homeostasis using yeast strains from a DUB-deletion library. The defective growth observed in ubp3-deleted (ubp3Δ) yeast upon fluconazole treatment suggests that lack of Ubp3 disrupts sterol homeostasis. Deep-coverage quantitative proteomics reveals that ergosterol biosynthesis is rerouted into a sterol pathway that generates toxic products in the absence of Ubp3. Further genetic and biochemical analysis indicated that Ubp3 enhances the proteasome's ability to degrade the ergosterol biosynthetic enzymes Erg1 and Erg3. The retardation of ergosterol enzyme degradation in the ubp3Δ strain resulted in the severe accumulation of the intermediate lanosterol and a branched toxic sterol, and ultimately disrupted sterol homeostasis and led to the fluconazole susceptibility. Our findings uncover a role for Ubp3 in sterol homeostasis and highlight its potential as a new antifungal target.


Asunto(s)
Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Homeostasis , Proteolisis , Saccharomyces cerevisiae/metabolismo
9.
Mol Plant Microbe Interact ; 35(5): 369-379, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35100009

RESUMEN

The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas Bacterianas , Dickeya , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Macrólidos , Enfermedades de las Plantas/microbiología , Poliaminas , Virulencia/genética
10.
BMC Microbiol ; 22(1): 264, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333788

RESUMEN

BACKGROUND: Deinococcus radiodurans (D. radiodurans) is best known for its extreme resistance to diverse environmental stress factors, including ionizing radiation (IR), ultraviolet (UV) irradiation, oxidative stress, and high temperatures. Robust DNA repair system and antioxidant system have been demonstrated to contribute to extreme resistance in D. radiodurans. However, practically all studies on the mechanism underlying D. radiodurans's extraordinary resistance relied on the treated strain during the post-treatment recovery lag phase to identify the key elements involved. The direct gene or protein changes of D. radiodurans after stress have not yet been characterized. RESULTS: In this study, we performed a proteomics profiling on D. radiodurans right after the heavy ion irradiation treatment, to discover the altered proteins that were quickly responsive to IR in D. radiodurans. Our study found that D. radiodurans shown exceptional resistance to 12C6+ heavy ion irradiation, in contrast to Escherichia coli (E.coli) strains. By using iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)-based quantitative mass spectrometry analysis, the kinetics of proteome changes induced by various dosages of 12C6+ heavy ion irradiation were mapped. The results revealed that 452 proteins were differentially expressed under heavy ion irradiation, with the majority of proteins being upregulated, indicating the upregulation of functional categories of translation, TCA cycle (Tricarboxylic Acid cycle), and antioxidation regulation under heavy ion irradiation. CONCLUSIONS: This study shows how D. radiodurans reacts to exposure to 12C6+ heavy ion irradiation in terms of its overall protein expression profile. Most importantly, comparing the proteome profiling of D. radiodurans directly after heavy ion irradiation with research on the post-irradiation recovery phase would potentially provide a better understanding of mechanisms underlying the extreme radioresistance in D. radiodurans.


Asunto(s)
Deinococcus , Iones Pesados , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Proteoma/metabolismo , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Antioxidantes/metabolismo
11.
Analyst ; 147(15): 3434-3443, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35797714

RESUMEN

Polyubiquitination signal deliver diverse cellular signal, which have been recognized as a sophisticated ubiquitin code. The perception and transduction of ubiquitination signal depend on the specificity and sensitivity of the ubiquitin-binding domain. Accurate and sensitive detection of polyubiquitination signal is crucial for revealing the dynamic cellular ubiquitin-regulated events. Western blotting (WB) and immunohistochemistry (IHC) are the most widely used biochemical strategies to detect ubiquitination signal on substrates under diverse physiological and pathological conditions. However, anti-ubiquitin antibodies fail to reflect polyubiquitination signal unbiasedly because of their strong preference for K63-linked ubiquitin chains. Herein, we demonstrated that our previously developed tandem hybrid ubiquitin-binding domain (ThUBD) chemically labeled with a reporter group such as horseradish peroxidase (ThUBD-HRP) could significantly improve the robustness and sensitivity of polyubiquitination signal detection. This advanced method was named TUF-WB Plus (TUF-WB+). The TUF-WB+ method significantly increases the sensitivity and accuracy of ubiquitin detection and requires a shorter experimental operation time. Furthermore, it enables the ThUBD-HRP probe to function as a powerful tool for spatial in situ polyubiquitination detection in cells by immunohistochemistry. Our newly developed ThUBD-HRP probe and TUF-WB+ method provide a robust and powerful tool for ubiquitination signal detection with hypersensitivity in an unbiased manner.


Asunto(s)
Transducción de Señal , Ubiquitina , Unión Proteica , Ubiquitinación
12.
J Proteome Res ; 20(2): 1328-1340, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443437

RESUMEN

Proteomics approaches designed to catalogue all open reading frames (ORFs) under a defined set of growth conditions of an organism have flourished in recent years. However, no proteome has been sequenced completely so far. Here, we generate the largest yeast proteome data set, including 5610 identified proteins, using a strategy based on optimized sample preparation and high-resolution mass spectrometry. Among the 5610 identified proteins, 94.1% are core proteins, which achieves near-complete coverage of the yeast ORFs. Comprehensive analysis of missing proteins showed that proteins are missed mainly due to physical properties. A review of protein abundance shows that our proteome encompasses a uniquely broad dynamic range. Additionally, these values highly correlate with mRNA abundance, implying a high level of accuracy, sensitivity, and precision. We present examples of how the data could be used, including reannotating gene localization, providing expression evidence of pseudogenes. Our near-complete yeast proteome data set will be a useful and important resource for further systematic studies.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espectrometría de Masas , Proteoma/genética , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Proteome Res ; 20(6): 3290-3304, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34008989

RESUMEN

Blastobotrys adeninivorans plays an essential role in pile-fermenting of Pu-erh tea. Its ability to assimilate various carbon and nitrogen sources makes it available for application in a wide range of industry sectors. The genome of B. adeninivorans TMCC 70007 isolated from pile-fermented Pu-erh tea was sequenced and assembled. Proteomics analysis indicated that 4900 proteins in TMCC 70007 were expressed under various culture conditions. Proteogenomics mapping revealed 48 previously unknown genes and corrected 118 gene models predicted by GeneMark-ES. Ortho-proteogenomics analysis identified 17 previously unidentified genes in B. adeninivorans LS3, the first strain with a sequenced genome among the genus Blastobotrys as well. More importantly, five species specific genes were identified from TMCC 70007, which could serve as a barcode for strain typing and were applicable for fermentation process protection of this industrial species. The datasets generated from tea aqueous extract culture not only increased the proteome coverage and accuracy but also contributed to the identification of proteins related to polyphenols and caffeine, which were considered to change greatly during the microbial fermentation of Pu-erh tea. This study provides a proteome perspective on TMCC 70007, which was considered to be an important strain in the production of Pu-erh tea. The systematic proteogenomics analysis not only made a better annotation on the genome of B. adeninivorans TMCC 70007 as previous proteogenomics study but also provided solution for fermentation process protection on valuable industrial species with species specific genes uniquely identified from proteogenomics study.


Asunto(s)
Proteogenómica , , Carbolinas , Fermentación , Saccharomyces cerevisiae , Saccharomycetales
14.
Mol Cell Proteomics ; 18(4): 773-785, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30622160

RESUMEN

De novo peptide sequencing for large-scale proteomics remains challenging because of the lack of full coverage of ion series in tandem mass spectra. We developed a mirror protease of trypsin, acetylated LysargiNase (Ac-LysargiNase), with superior activity and stability. The mirror spectrum pairs derived from the Ac-LysargiNase and trypsin treated samples can generate full b and y ion series, which provide mutual complementarity of each other, and allow us to develop a novel algorithm, pNovoM, for de novo sequencing. Using pNovoM to sequence peptides of purified proteins, the accuracy of the sequence was close to 100%. More importantly, from a large-scale yeast proteome sample digested with trypsin and Ac-LysargiNase individually, 48% of all tandem mass spectra formed mirror spectrum pairs, 97% of which contained full coverage of ion series, resulting in precision de novo sequencing of full-length peptides by pNovoM. This enabled pNovoM to successfully sequence 21,249 peptides from 3,753 proteins and interpreted 44-152% more spectra than pNovo+ and PEAKS at a 5% FDR at the spectrum level. Moreover, the mirror protease strategy had an obvious advantage in sequencing long peptides. We believe that the combination of mirror protease strategy and pNovoM will be an effective approach for precision de novo sequencing on both single proteins and proteome samples.


Asunto(s)
Metaloproteasas/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Tripsina/metabolismo , Acetilación , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Estabilidad de Enzimas , Péptidos/química , Proteoma/metabolismo
15.
J Proteome Res ; 19(1): 493-502, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31789040

RESUMEN

Ubiquitin ligases (E3s) serve as key regulators for the ubiquitylation-mediated pathway. The identification of the corresponding relationship between E3 and its substrates is challenging but required for understanding the regulatory network of ubiquitylation. The low abundance of ubiquitinated conjugates and high redundancy of E3 substrate regulation made the screening pretty hard. Herein, we combined SILAC-based quantitative proteomics with two contrary genetic methods (overexpression and knockout) in theory for E3 (Hrt3, the F-box subunit of the SCF complex) substrate screening. The knockout method could not overcome the constraint mentioned above, while the overexpression approach turned on the access to the potential substrates of E3. Subsequently, we obtained 77 candidates, which are involved in many critical biological processes and need to be verified in the future. Within these candidates, we confirmed the relationship between one of the candidates Nce103 and Hrt3 and linked Hrt3 with oxygen sensitivity and oxidative stress response in which Nce103 took part as well. This research is also beneficial for understanding the impact of oxygen supply on regulation of yeast growth through the ubiquitination of Nce103.


Asunto(s)
Proteínas F-Box/metabolismo , Técnicas de Inactivación de Genes/métodos , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas F-Box/genética , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Oxígeno/metabolismo , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
16.
J Proteome Res ; 19(12): 4808-4814, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33172275

RESUMEN

The Chromosome-Centric Human Proteome Project (C-HPP) was launched in 2012 to perfect the annotation of human protein existence by identifying stronger evidence of the expression of missing proteins (MPs) at the protein level. After an 8 year effort all over the world, the number of MPs in the neXtProt database significantly decreased from 5511 (2012-02-24) to 1899 (2020-01-17). It is now more difficult to provide confident evidence of the remaining MPs because of their specific characteristics, including low abundance, low molecular weight, unexpected modifications, transmembrane structure, tissue-expression specificity, and so on. A higher resolution mass spectrometry (MS) interpretation engine might provide an opportunity to identify these buried MPs in complex samples by the combination with multi-tissue large-scale proteomics. In this study, open-pFind was used to dig MPs from 20 pairs of healthy human tissues by Wang et al. ( Mol. Syst. Biol. 2019, 15 (2), e8503) combined with our large-scale testis data set digested by three enzymes (Glu-C, Lys-C, and trypsin) with specificity for different amino acid residues ( J. Proteme Res. 2019, 18 (12), 4189-4196). A total of 1 535 536 peptides with 17 283 477 peptide-spectrum matches (PSMs) were mapped to 14 279 protein entries at a false discovery rate of <1% at the PSM, peptide, and protein levels. A total of 103 MP candidates were identified, among which 86 candidates had more unique peptide numbers compared with our single testis tissue. After rigorous screening, manual checks, peptide synthesis, and matching with documented peptides from PeptideAtlas, we validated four MPs, P0C7T8 (duodenum and small intestine), Q8WWZ4 (stomach and rectum), Q8IV35 (fallopian tube), and O14921 (tonsil), at the protein level. All MS raw files have been deposited to the ProteomeXchange with identifier PXD021391.


Asunto(s)
Proteoma , Proteómica , Femenino , Humanos , Masculino , Espectrometría de Masas , Peso Molecular , Péptidos
17.
Anal Chem ; 92(1): 1074-1080, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31820937

RESUMEN

Polyubiquitination encompasses complex topologies through various linkage types to deliver diverse cellular signals, which has been recognized as a sophisticated ubiquitin code. Accurate comparison of polyubiquitination signals is critical for revealing the dynamic cellular ubiquitination-regulated events. Western blotting (WB) is the most widely used biochemical method to quantify proteins and posttranslational modifications under diverse physiological conditions. The accuracy and sensitivity of the WB mainly depend on the quality and specificity of the antibody. In this study, we found that the antiubiquitin antibodies exhibited different affinities to the eight linkage types of ubiquitin chains, with the highest sensitivity for the K63-linked chain, lower efficiency for M1 and K48, and very low affinity for the other types of chains. Herein, we introduced the tandem hybrid ubiquitin-binding domain (ThUBD)-based far-Western blotting (TUF-WB) to visualize the signal of synthetic ubiquitin chains or ubiquitinated conjugates on a solid membrane by utilizing the unbiased affinity of ThUBD to all types of ubiquitin linkages. As compared to antiubiquitin antibody detection, TUF-WB can accurately quantify the signal intensity to the mass amounts of all eight ubiquitin chains. Meanwhile, the sensitivity of this method in detecting complex ubiquitinated samples was 4-5-fold higher than those of antibodies. Consequently, TUF-WB allows accurate quantification of polyubiquitination signal on the membrane with great sensitivity and wider dynamic range.


Asunto(s)
Far-Western Blotting/métodos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Proteínas Portadoras/análisis , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/química , Células HEK293 , Humanos , Proteínas de la Membrana/química , Dominios Proteicos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cancer Cell Int ; 20: 158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425693

RESUMEN

[This corrects the article DOI: 10.1186/s12935-019-1087-4.].

19.
Cancer Cell Int ; 20: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938020

RESUMEN

BACKGROUND: Melanoma is the most aggressive type of skin cancer with high mortality rate and poor prognosis. lncRNA MEG3, a tumor suppressor, is closely related to the development of various cancers. However, the role of lncRNA MEG3 in melanoma has seldom been studied. METHODS: RT-PCR was used to examine the expressions of lncRNA MEG3 and E-cadherin in melanoma patients and cell lines. Then, the biological functions of lncRNA MEG3 and E-cadherin were demonstrated by transfecting lncRNA MEG3-siRNA, lncRNA MEG3-overexpression, E-cadherin-siRNA and E-cadherin-overexpression plasmids in melanoma cell lines. Moreover, CCK8 assay and colony formation assay were utilized to assess the cell proliferation; Transwell assay was performed to evaluate the cell invasive ability; and tumor xenografts in nude mice were applied to test the tumor generation. Additionally, the target interactions among lncRNA MEG3, miR-21 and E-cadherin were determined by dual luciferase reporter assay. Finally, RT-PCR and WB were further conducted to verify the regulatory roles among lncRNA MEG3, miR-21 and E-cadherin. RESULTS: The clinical data showed that lncRNA MEG3 and E-cadherin expressions were both declined in carcinoma tissues as compared with their para-carcinoma tissues. Moreover, lncRNA MEG3 and E-cadherin expressions in B16 cells were also higher than those in A375 and A2058 cells. Subsequently, based on the differently expressed lncRNA MEG3 and E-cadherin in these human melanoma cell lines, we chose B16, A375 and A2058 cells for the following experiments. The results demonstrated that lncRNA MEG3 could suppress the tumor growth, tumor metastasis and formation; and meanwhile E-cadherin had the same effects on tumor growth, tumor metastasis and formation. Furthermore, the analysis of Kaplan-Meier curves also confirmed that there was a positive correlation between lncRNA MEG3 and E-cadherin. Ultimately, dual luciferase assays were further used to verify that lncRNA MEG3 could directly target miR-21 which could directly target E-cadherin in turn. Additionally, the data of RT-PCR and WB revealed that knockdown of lncRNA MEG3 in B16 cells inhibited miR-21 expression and promoted E-cadherin expression, but overexpression of lncRNA MEG3 in A375 and A2058 cells presented completely opposite results. CONCLUSION: Our findings indicated that lncRNA MEG3 might inhibit the tumor growth, tumor metastasis and formation of melanoma by modulating miR-21/E-cadherin axis.

20.
Drug Dev Res ; 81(4): 517-525, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32065451

RESUMEN

Lipopolysaccharide (LPS) is a toxic component of the outer membrane of gram-negative bacteria that can activate the blood coagulation system, leading to disseminated intravascular coagulation (DIC). DIC is a syndrome characterized by thromboembolism and multiple organ failure. Herein, the beneficial effect of paeoniflorin (PF) on the alleviation of LPS-induced DIC was investigated with an experimental DIC mouse model. Briefly, mice were randomly divided into the following six groups: (1) control; (2) LPS; (3) heparin; (4) low-PF treatment; (5) medium-PF treatment; and (6) high-PF treatment. The histological morphology of the liver and kidney was observed, and the coagulation indicators (such as prothrombin time), function indicators (such as alanine transferase), and inflammatory factors (such as TNF-α) were detected. Additionally, an in vitro cell inflammation model using RAW 264.7 murine macrophages was established. Activation of the nuclear factor kappa B (NF-κB) signaling pathway and tumor necrosis factor-α (TNF-α) were determined by western blotting. Based on our findings, PF could significantly improve the histological morphology of the liver and kidney, indicating that PF protects the liver and kidney against damage induced by LPS. Additionally, PF improved the function and coagulation indicators and reduced the production of inflammatory factors. In vitro, PF inhibited the expression of TNF-α by suppressing NF-κB signaling pathway activation. Collectively, our findings support the hypothesis that PF has anti-inflammatory and anticoagulation effects for the alleviation of LPS-induced DIC. PF is thus a potential co-treatment option for DIC.


Asunto(s)
Antiinflamatorios/farmacología , Coagulación Intravascular Diseminada/tratamiento farmacológico , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Monoterpenos/farmacología , Alanina Transaminasa/metabolismo , Animales , Coagulación Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Coagulación Intravascular Diseminada/fisiopatología , Inflamación/patología , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA