Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Resist Updat ; 73: 101032, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198846

RESUMEN

Acquired radioresistance is the primary contributor to treatment failure of radiotherapy, with ferroptosis is identified as a significant mechanism underlying cell death during radiotherapy. Although resistance to ferroptosis has been observed in both clinical samples of radioresistant cells and cell models, its mechanism remains unidentified. Herein, our investigation revealed that radioresistant cells exhibited greater tolerance to Glutathione Peroxidase 4 (GPX4) inhibitors and, conversely, increased sensitivity to ferroptosis suppressor protein 1 (FSP1) inhibitors compared to their sensitive counterparts. This observation suggested that FSP1 might play a dominant role in the development of radioresistance. Notably, the knockout of FSP1 demonstrated considerably superior efficacy in resensitizing cells to radiotherapy compared to the knockout of GPX4. To elucidate the driving force behind this functional shift, we conducted a metabolomic assay, which revealed an upregulation of Coenzyme Q (CoQ) synthesis and a downregulation of glutathione synthesis in the acquired radioresistance cells. Mechanistically, CoQ synthesis was found to be supported by aarF domain containing kinase 3-mediated phosphorylation of CoQ synthases, while the downregulation of Solute carrier family 7 member 11 led to decreased glutathione synthesis. Remarkably, our retrospective analysis of clinical response data further validated that the additional administration of statin during radiotherapy, which could impede CoQ production, effectively resensitized radioresistant cells to radiation. In summary, our findings demonstrate a dependency shift from GPX4 to FSP1 driven by altered metabolite synthesis during the acquisition of radioresistance. Moreover, we provide a promising therapeutic strategy for reversing radioresistance by inhibiting the FSP1-CoQ pathway.


Asunto(s)
Ferroptosis , Humanos , Regulación hacia Arriba , Ferroptosis/genética , Estudios Retrospectivos , Regulación hacia Abajo , Glutatión
2.
Cancer Cell Int ; 24(1): 315, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272147

RESUMEN

BACKGROUND: Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS: Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT: PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS: In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.

3.
Phytochem Anal ; 35(6): 1496-1508, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750654

RESUMEN

INTRODUCTION: Polygala fallax Hemsl (PFH) is a widely used herbal medicine in Guangxi, China. At present, research on PFH mainly focuses on extraction technology and cultivation, lacking quality control standards for systematic evaluation. OBJECTIVES: The study aimed to assess the quality of PFH from different sources and to predict markers that would help assess quality. METHODS: Fingerprinting of 15 batches of PFH samples was performed by ultra-high performance liquid chromatography (UPLC) and similarity was assessed using hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least squares discrimination (OPLS-DA). Differential components were screened by mathematical analysis, and a "component-target-pathway" network map was constructed in combination with network pharmacology, quality markers (Q-markers) of PFH were predicted, and quantitative analysis was performed. RESULTS: Fifteen batches were fingerprinted for PFH, with 11 common peaks, and peak 5 was identified as 4-hydroxybenzoic acid, which was generally consistent with the results of HCA, PCA, and OPLS-DA. Network pharmacology screened 18 potential compounds, 45 core targets, and 20 key pathways, integrating fingerprinting, pattern recognition, and network pharmacology methods. One of the potential Q-markers that can identify the principle of testability, efficacy, and specificity is 4-hydroxybenzoic acid, whose content ranges from 0.0188 to 1.4517 mg/g. CONCLUSION: The potential Q-markers of PFH were predicted by integrating fingerprinting, pattern recognition, and network pharmacological analysis, which provided a scientific basis for the overall control and evaluation of the quality of PFH and a theoretical reference for the study of the quality standard of multi-base traditional Chinese medicine.


Asunto(s)
Medicamentos Herbarios Chinos , Polygala , Análisis de Componente Principal , Polygala/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Cromatografía Líquida de Alta Presión/métodos , Farmacología en Red , Quimiometría/métodos , Control de Calidad , Análisis por Conglomerados , Análisis de los Mínimos Cuadrados
4.
Cancer Cell Int ; 23(1): 208, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742009

RESUMEN

Lung cancer is a leading cause of cancer-related deaths, and the most common type is lung adenocarcinoma (LUAD). LUAD is frequently diagnosed in people who never smoked, patients are always diagnosed at advanced inoperable stages, and the prognosis is ultimately poor. Thus, there is an urgent need for the development of novel targeted therapeutics to suppress LUAD progression. In this study, we demonstrated that the expression of DNA replication and sister chromatid cohesion 1 (DSCC1) was higher in LUAD samples than normal tissues, and the overexpression of DSCC1 or its coexpressed genes were highly correlated with poor outcomes of LUAD patients, highlighting DSCC1 might be involved in LUAD progression. Furthermore, the expression of DSCC1 was positively correlated with multiple genetic mutations which drive cancer development, including TP53, TTN, CSMD, and etc. More importantly, DSCC1 could promote the cell proliferation, stemness, EMT, and metastatic potential of LUAD cells. In addition, DSCC1 interacted with HSP90AB1 and promoted the progression of LUAD via regulating ER stress. Meanwhile, DSCC1 expression negatively correlated with immune cell infiltration in lung cancer, and DSCC1 positively regulated the expression of PD-L1 in LUAD cells. Collectively, this study revealed that DSCC1 is a novel therapeutic target to treat LUAD and a biomarker for predicting the efficiency of PD-1/PD-L1 blockade treatment.

5.
BMC Public Health ; 23(1): 1600, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608310

RESUMEN

OBJECTIVE: To investigate the incidence of suicide attempts among adolescents with HIV/AIDS in Liangshan Prefecture, Sichuan Province, as well as the correlation between negative life events, sleep, exercise, drug therapy and suicide attempts. METHODS: A total of 180 Yi adolescents aged 11-19 years with HIV/AIDS in a county of Liangshan Prefecture, Sichuan Province, China, were investigated by census. The main outcome indicators included the incidence of suicide attempts and whether negative life events, sleep, exercise, drug therapy and other factors were related to suicide attempts. RESULTS: We found that the incidence rate of suicide attempts among Yi adolescents with HIV/AIDS in Liangshan Prefecture was 13.9%. Negative life events were a risk factor for suicide attempts (OR = 1.047, p < 0.001, 95% CI 1.027-1.067). In the factors of negative life events, adaptation was a risk factor for suicide attempts (OR = 1.203, p = 0.026, 95% CI 1.022-1.416), and academic pressure showed a tendency to be a risk factor for suicide attempts (OR = 1.149, p = 0.077, 95% CI 0.985-1.339). However, the punishment factor, interpersonal stress factor and loss factor had no significant correlation with suicide attempts. There was no significant correlation between sleep, exercise, drug therapy and suicide attempts. CONCLUSION: The proportion of suicide attempts among Yi adolescents with HIV/AIDS in Liangshan Prefecture is high and should be considered. Negative life events are independent risk factors for suicide attempts, and it is necessary to strengthen the screening and early intervention for suicide attempts in HIV/AIDS adolescents with definite negative life events.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Intento de Suicidio , Humanos , Adolescente , Aclimatación , Censos , China/epidemiología
6.
Cancer Cell Int ; 22(1): 189, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568951

RESUMEN

BACKGROUND: Inositol Polyphosphate-5-Phosphatase B (INPP5B), a inositol 5-phosphatase, plays an important role in many biological processes through phosphorylating PI(4,5)P2 and/or PI(3,4,5)P3 at the 5-position. Nevertheless, little is known about its function and cellular pathways in tumors. This study aims to investigate the potential role of INPP5B as a diagnostic and prognostic biomarker for lung adenocarcinoma (LUAD), as well as its biological functions and molecular mechanisms in LUAD. METHODS: TCGA, GEO, CTPAC, and HPA datasets were used for differential expression analysis and pathological stratification comparison. The prognostic and diagnostic role of INPP5B was determined by Kaplan-Meier curves, univariate and multivariate Cox regression analysis, and receiver operating characteristics (ROC) curve analyses. The potential mechanism of INPP5B was explored through GO, KEGG, and GSEA enrichment analysis, as well as GeneMANIA and STRING protein-protein interaction (PPI) network. PicTar, PITA, and miRmap databases were used for exploring miRNA targeting INPP5B. In molecular biology experiments, immunohistochemical analyses and Western blot analyses were used to determine protein expression. Co-immunoprecipitation assay was used to detect protein-protein interactions. CCK8 assays and colony formation assays were used for the measurement of cell proliferation. Cell cycle was assessed by PI staining with flow cytometry. Cell migration was performed by Transwell assays and wound healing assays. RESULT: INPP5B was decreased in LUAD tissues compared with normal adjacent tissues. And the low expression of INPP5B was associated with late-stage pathological features. In addition, INPP5B was found to be a significant independent prognostic and diagnostic factor for LUAD patients. Hsa-miR-582-5p was predicted as a negative regulator of INPP5B mRNA expression. INPP5B was significantly correlated with the expression of PTEN and the activity of PI3K/AKT signaling pathways, as determined by enrichment analysis and PPI network. In vitro experiments partially confirmed the aforementioned findings. INPP5B could interact directly with PTEN. INPP5B overexpression inhibited LUAD cell proliferation and migration while downregulating the AKT pathway. CONCLUSION: Our results demonstrated that INPP5B could inhibit the proliferation and metastasis of LUAD cells. It could serve as a novel diagnostic and prognostic biomarker for LUAD patients. Trial registration LUAD tissues and corresponding para-cancerous tissues were collected from 10 different LUAD patients at Hangzhou First People's Hospital. The Ethics Committee of Hangzhou First People's Hospital has approved this study. (registration number: IIT-20210907-0031-01; registration date: 2021.09.13).

7.
J Biomed Sci ; 29(1): 34, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655269

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer cases, while metastasis is considered the leading cause of HCC-related death. However, the currently available treatment strategies for efficient suppression of metastasis are limited. Therefore, novel therapeutic targets to inhibit metastasis and effectively treat HCC are urgently required. METHODS: Wound healing and Transwell assays were used to determine the migration and invasion abilities of HCC cells in vitro. Quantitative real-time PCR (qRT-PCR), protein array, immunofluorescence, and immunoprecipitation experiments were used to study the mechanism of DYRK1A-mediated metastasis. A tail vein metastasis model and H&E staining were utilized to assess metastatic potential in vivo. RESULTS: The results of the current study demonstrated that dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) was upregulated in HCC tissues compared with normal liver tissues. Additionally, the level of DYRK1A was increased in primary HCC tissues of patients with metastasis compared with those of patients without metastasis, and DYRK1A overexpression correlated with worse outcomes in liver cancer patients. Gain- and loss-of-function studies suggested that DYRK1A enhanced the invasion and migration abilities of HCC cells by promoting epithelial-mesenchymal transition (EMT). Regarding the promoting effect of DYRK1A on cell invasion, the results showed that DYRK1A was coexpressed with TGF-ß/SMAD and STAT3 signalling components in clinical tumour samples obtained from patients with HCC. DYRK1A also activated TGF-ß/SMAD signalling by interacting with tuberous sclerosis 1 (TSC1) and enhanced metastasis of HCC cells by activating STAT3. Furthermore, DYRK1A promoted EMT by cooperatively activating STAT3/SMAD signalling. CONCLUSION: Overall, the present study not only uncovered the promoting effect of DYRK1A on HCC metastasis and revealed the mechanism but also provided a new approach to predict and treat metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
Anticancer Drugs ; 32(7): 727-733, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33735117

RESUMEN

Vinpocetine is widely used to treat cerebrovascular diseases. However, the effect of vinpocetine to treat hepatocellular carcinoma (HCC) has not been investigated. In this study, we revealed that vinpocetine was associated with antiproliferative activity in HCC cells, but induced cytoprotective autophagy, which restricted its antitumor activity. Autophagy inhibitors improved the antiproliferative activity of vinpocetine in HCC cells. Sorafenib is effective to treat advanced HCC, but the effect of autophagy induced by sorafenib is indistinct. We demonstrated vinpocetine plus sorafenib suppressed the cytoprotective autophagy activated by vinpocetine in HCC cells and significantly induced apoptosis and suppressed cell proliferation in HCC cells. In addition, vinpocetine plus sorafenib activates glycogen synthase kinase 3ß (GSK-3ß) and subsequently inhibits cytoprotective autophagy induced by vinpocetine in HCC cells. Meanwhile, overexpression of GSK-3ß was efficient to increase the apoptosis induced by vinpocetine plus sorafenib in HCC cells. Our study revealed that vinpocetine plus sorafenib could suppress the cytoprotective autophagy induced by vinpocetine and subsequently show synergistically anti-HCC activity via activating GSK-3ß and the combination of vinpocetine and sorafenib might reverse sorafenib resistance via the PI3K/protein kinase B/GSK-3ß signaling axis. Thus, vinpocetine may be a potential candidate for sorafenib sensitization and HCC treatment, and our results may help to elucidate more effective therapeutic options for HCC patients with sorafenib resistance.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Sorafenib/farmacología , Alcaloides de la Vinca/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Células Hep G2 , Humanos , Transducción de Señal/efectos de los fármacos , Sorafenib/administración & dosificación , Alcaloides de la Vinca/administración & dosificación
9.
J Cell Mol Med ; 23(11): 7427-7437, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31454149

RESUMEN

DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR-sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild-type EGFR remains modest. We showed that DYRK1A repression could enhance the anti-cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild-type NSCLC cells. In addition, harmine could enhance the anti-NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti-cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild-type NSCLC patients.


Asunto(s)
Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Factor de Transcripción STAT3/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas DyrK
10.
Acta Pharmacol Sin ; 40(4): 546-555, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29930276

RESUMEN

Despite more effective chemotherapy combined with limb-salvage surgery for the osteosarcoma treatment, survival rates for osteosarcoma patients have stagnated over the past three decades due to the poor prognosis. Osteosarcoma cancer stem cells (OSCs) are responsible for the growth and metastasis of osteosarcoma. The existence of OSCs offers a theoretical explanation for therapeutic failures including tumor recurrence, metastasis, and drug resistance. Understanding the pathways that regulate properties of OSCs may shed light on mechanisms that lead to osteosarcoma and suggest better modes of treatment. In this study, we showed that the expression level of Kruppel-like factor 4 (KLF4) is highly associated with human osteosarcoma cancer stemness. KLF4-overexpressed osteosarcoma cells displayed characteristics of OSCs: increased sphere-forming potential, enhanced levels of stemness-associated genes, great chemoresistance to adriamycin and CDDP, as well as more metastasis potential. Inversely, KLF4 knockdown could reduce colony formation in vitro and inhibit tumorigenesis in vivo, supporting an oncogenic role for KLF4 in osteosarcoma pathogenesis. Furthermore, KLF4 was shown to activate the p38 MAPK signaling pathway to promote cancer stemness. Altogether, our studies uncover an essential role for KLF4 in regulation of OSCs and identify KLF4-p38 MAPK axis as a potential therapeutic target for osteosarcoma treatment.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Células Madre Neoplásicas/metabolismo , Osteosarcoma/genética , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Fenotipo , ARN Interferente Pequeño/farmacología , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Biochem Biophys Res Commun ; 503(2): 1123-1129, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29944884

RESUMEN

Lung squamous cell carcinoma (LSCC) is a common type of non-small-cell lung cancer (NSCLC) and lacks effective treatment. Regorafenib, an oral multikinase inhibitor, has demonstrated promising anti-tumor activity in various solid tumors. To study whether regorafenib inhibits LSCC cells, we investigate the compound in several LSCC cell lines and explore the possible mechanism. In this study, we confirmed that regorafenib had anti-proliferation effect on LSCC cell lines by inducing G0/G1 arrest. In addition, glycogen synthase kinase 3ß (GSK3ß) remained at the same level and Ser9 phosphorylation of GSK3ß decreased with increasing incubation time and increasing regorafenib concentration in LSCC cells. GSK3ß inhibition enhanced the anti-tumor activity of regorafenib. Thus, GSK3ß activation restricted the anti-cancer effect of regorafenib on LSCC. In conclusion, regorafenib might be a promising drug for LSCC therapy. GSK3ß might be a potential target to increase the anti-tumor effect of regorafenib in LSCC cells.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Piridinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosforilación/efectos de los fármacos
12.
Biochem Biophys Res Commun ; 498(3): 481-486, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505792

RESUMEN

Hypoxia promotes HCC progression and therapy resistance, and there is no systemic treatment for HCC patients after sorafenib resistance. Thus, it is urgent to develop potential therapeutic regimens for HCC patients by targeting hypoxia signaling. In this study, we showed that evodiamine might be a potential therapeutic medicine for HCC by suppressing HIF-1α. In addition, evodiamine could sensitize the anti-HCC effect of vorinostat in HCC cells under hypoxia. Furthermore, evodiamine plus vorinostat accelerated the degradation of HIF-1α in HCC cells under hypoxia. In general, evodiamine might be a potential therapeutic candidate for HCC patients, and evodiamine combining with vorinostat might be an attractive chemotherapy strategy for HCC treatment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ácidos Hidroxámicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Quinazolinas/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Hipoxia/complicaciones , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/metabolismo , Vorinostat
13.
J Cell Mol Med ; 20(11): 2148-2159, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27374973

RESUMEN

Gastric cancer is the fourth most common cancer in the world. The clinical applications of both chemotherapy and targeted drugs are limited because of the complexity of gastric cancer. In this study, sulforhodamine B, colony formation assay, 4',6-diamidino-2-phenylindole (DAPI) stain, flow cytometry were used to determine the in vitro cytotoxicity, apoptosis and mitochondrial membrane potential of gastric cancer AGS and HGC-27 cells before and after treatment. Real-time PCR and Western blot were used to analyse the mRNA transcription and protein expression respectively. Confocal microscopy was used to determine the localization of target protein within the cells. Treatment with the combination of ABT-737 and 2,5-dimethyl-celecoxib (DMC) showed strong synergistic effect in both AGS and HGC-27 cells. Moreover, DMC would not influence the intracellular prostaglandin E2 (PGE2) level, thus lacking the toxicity profile of celecoxib. Interestingly, given the significant synergistic effect, combination treatment did not affect the protein expression of BH-3 proteins including Puma, Noxa and Bim. In combination treatment, cell apoptosis was found independent of caspase-3 activation. The translocation of apoptosis-inducing factor (AIF) from mitochondrion to nuclear was responsible for the induced apoptosis in the combination treatment. Taken together, this study provided a novel combination treatment regimen for gastric cancer. Furthermore, the existence of caspase-independent apoptotic pathway induced by treatment of ABT-737 was not yet seen until combined with DMC, which shed light on an alternative mechanism involved in Bcl-2 inhibitor-induced apoptosis.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Compuestos de Bifenilo/farmacología , Celecoxib/farmacología , Núcleo Celular/metabolismo , Nitrofenoles/farmacología , Pirazoles/farmacología , Neoplasias Gástricas/patología , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Piperazinas/farmacología , Transporte de Proteínas/efectos de los fármacos
14.
Acta Pharmacol Sin ; 37(12): 1597-1605, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27665846

RESUMEN

AIM: Deacetylisovaltratum (DI) is isolated from the traditional Chinese herbal medicine Patrinia heterophylla Bunge, which exhibits anti-cancer activity. Here, we investigated the effects of DI on human gastric carcinoma cell lines in vitro and elucidated its anti-cancer mechanisms. METHODS: Human gastric carcinoma AGS and HGC-27 cell lines were treated with DI, and cell viability was detected with MTT assay. Cell cycle stages, apoptosis and mitochondrial membrane potential were measured using flow cytometry. Protein levels were analyzed by Western blotting. Tubulin polymerization assays and immunofluorescence were used to characterize the tubulin polymerization process. RESULTS: DI inhibited the cell viability of AGS and HGC-27 cells in a dose- and time-dependent manner with IC50 values of 12.0 and 28.8 µmol/L, respectively, at 24 h of treatment. Treatment with DI (10-100 µmol/L) dose-dependently promoted tubulin polymerization, and induced significant G2/M cell cycle arrest in AGS and HGC-27 cells. Moreover, DI treatment disrupted mitochondrial membrane potential and induced caspase-dependent apoptosis in AGS and HGC-27 cells. CONCLUSION: DI induces G2/M-phase arrest by disrupting tubulin polymerization in human gastric cancer cells, which highlights its potent anti-cancer activity and potential application in gastric cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Moduladores de Tubulina/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Tubulina (Proteína)/química , Moduladores de Tubulina/química
15.
Toxicol Appl Pharmacol ; 274(2): 319-27, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24321340

RESUMEN

Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Estilbenos/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 5 Relacionada con la Autofagia , Beclina-1 , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Humanos , Macrólidos/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nitrofenoles/farmacología , Fosforilación , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biomed Pharmacother ; 178: 117237, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096616

RESUMEN

The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.


Asunto(s)
Autofagia , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Autofagia/genética , Lisosomas/metabolismo , Inflamación/patología , Inflamación/genética , Inflamación/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
17.
Int J Biol Macromol ; 280(Pt 4): 136111, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343257

RESUMEN

Studies with regard to how to obtain superhydrophobic properties by directly coating emulsified silicone oil onto the surface of cotton fabric have always been a hot topic in the field of textiles. In this paper, an amphoteric microgel with thermo- and pH-responsive ability was synthesized. Subsequently, a series of Poly(methylhydrosiloxane) (PMHS) /water emulsions were prepared by using these amphoteric microgels as a Pickering emulsifier. When the PMHS/water system's mass ratio was 5/5 and the microgel content was kept at 2.0 wt%, this emulsion showed good stability allowing the PMHS parts to be dispersed uniformly in aqueous solution. The optical microscopy showed the emulsion's particle size was in a range from 5 to 20 µm and the stability test confirmed that no stratification occurred when this emulsion was subjected to 3000 rpm for 30 min. By using this emulsion as a post-treatment reagent, cotton fabrics with different yarn counts can obtain a water contact angle as high as 150o, which is about 25 % higher than commercial emulsifiers. Furthermore, this cotton fabric can hold superhydrophobicity after 50 rubbing cycles and 10 peel-off cycles. The development of this work provides a new direction for the study of the application of microgels.

18.
Redox Biol ; 70: 103039, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38241838

RESUMEN

The function of SLC7A11 in the process of ferroptosis is well-established, as it regulates the synthesis of glutathione (GSH), thereby influencing tumor development along with drug resistance in non-small cell lung cancer (NSCLC). However, the determinants governing SLC7A11's membrane trafficking and localization remain unknown. Our study identified SPTBN2 as a ferroptosis suppressor, enhancing NSCLC cells resistance to ferroptosis inducers. Mechanistically, SPTBN2, through its CH domain, interacted with SLC7A11 and connected it with the motor protein Arp1, thus facilitating the membrane localization of SLC7A11 - a prerequisite for its role as System Xc-, which mediates cystine uptake and GSH synthesis. Consequently, SPTBN2 suppressed ferroptosis through preserving the functional activity of System Xc- on the membrane. Moreover, Inhibiting SPTBN2 increased the sensitivity of NSCLC cells to cisplatin through ferroptosis induction, both in vitro and in vivo. Using Abrine as a potential SPTBN2 inhibitor, its efficacy in promoting ferroptosis and sensitizing NSCLC cells to cisplatin was validated. Collectively, SPTBN2 is a potential therapeutic target for addressing ferroptosis dysfunction and cisplatin resistance in NSCLC.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Carcinoma de Pulmón de Células no Pequeñas , Ferroptosis , Neoplasias Pulmonares , Espectrina , Humanos , Sistema de Transporte de Aminoácidos y+/metabolismo , Transporte Biológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/farmacología , Glutatión , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Espectrina/metabolismo
19.
Anal Methods ; 16(32): 5584-5590, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39093047

RESUMEN

Ficus hirta Vahl is a healthy food with both medicinal and culinary properties and with anti-inflammatory and anti-aging effects. There is currently no standardized or universally accepted research strategy for evaluating the quality of Ficus hirta Vahl granules (FHGs). Therefore, the development of a comprehensive quality evaluation method is crucial for the quality control of FHGs. In this study, we used n-hexane : trichloromethane : ethyl acetate : glacial acetic acid = 20 : 4 : 7 : 1 as the optimal developing agent for TLC to separate and identify 15 batches of FHGs from different origins. Using HPLC, a fingerprint with 7 common peaks was established, and peaks 6 and 7 were attributed to psoralen and bergapten, respectively. The content of the identified components was determined. Further quality evaluation of FHGs was performed using chemical pattern recognition, and the results showed that hierarchical cluster analysis (HCA) could cluster 15 batches of FHGs into 2 categories. Principal component analysis (PCA) showed that 2 principal components can show the similarities and differences between different batches of FHGs. Orthogonal partial least squares discrimination (OPLS-DA) showed that components 5, 6 (psoralen) and 7 (bergapten) are landmark components that cause differences in FHG quality from different regions. By integrating the analytical modes of TLC, HPLC fingerprint and chemical pattern recognition, a scientific basis is provided for the comprehensive control and evaluation of herbal medicine quality.


Asunto(s)
Ficus , Control de Calidad , Ficus/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Análisis de Componente Principal , Análisis por Conglomerados , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas
20.
Phytomedicine ; 126: 155204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342015

RESUMEN

BACKGROUND: According to the literatures, triacanthine is isolated from the leaves of Gleditsia triacanthos L. and acts as an anti-hypertensive agent, also cardiotonic, antispasmodic and a respiratory analeptic. The 5-fluorouracil (5-FU) is widely used to treat the patients of colorectal cancer (CRC), but the resistance to 5-FU treatment restricts the therapeutic efficacy of CRC patients. PURPOSE: This study aims to explore a novel therapeutics regimen overcoming CRC resistance to 5-FU. METHODS: The cell proliferation of CRC cells was determined by SRB and colony formation assay. Transwell and wound-healing assay were applied to explore the potential metastatic abilities of CRC cells. qRT-PCR and Western blot were performed to evaluate the level of indicated mRNAs and proteins respectively. Xenograft assay was used to explore the anti-CRC effect of triacanthine. RESULTS: Triacanthine statistically restrained CRC proliferation both in vitro and in vivo. Triacanthine induced cell cycle G1/G0 phase arrest in CRC cells. Meanwhile, triacanthine also inhibited the migrative and invasive abilities of CRC cells. A Venn diagram was generated showing that O-6-Methylguanine-DNA Methyltransferase (MGMT) might be a molecular target of triacanthine in treating CRC. Furthermore, triacanthine plus 5-FU significantly suppressed the cell proliferation of CRC cells compared with single agent treatment alone, and highly synergistic anti-cancer effects were scored when 5-FU was combined with triacanthine in CRC cells. In addition, triacanthine sensitized the anti-cancer activity of 5-FU via regulating Ribonucleotide Reductase Regulatory Subunit M2 (RRM2). MGMT or RRM2 might be novel biomarkers for evaluating the therapeutical efficiency of 5-FU in CRC patients. CONCLUSION: We firstly demonstrated triacanthine suppressed cell proliferation and metastasis abilities and found the novel molecular targets of triacanthine in CRC cells. This is the first study to evaluate the anti-cancer efficiency of triacanthine plus 5-FU. Our study has revealed triacanthine as a pertinent sensitizer to 5-FU, and provided novel strategies for predicting outcomes and reversing resistance of 5-FU therapy.


Asunto(s)
Alcaloides , Neoplasias Colorrectales , Purinas , Humanos , Fluorouracilo/farmacología , Oxidorreductasas , Neoplasias Colorrectales/patología , Alcaloides/farmacología , Proliferación Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA