RESUMEN
Optical waveguides prepared by femtosecond laser direct writing have birefringent properties, which can affect polarization encoding and entanglement on chips. Here, we first propose a shape-stress dual compensation fabrication scheme to decrease birefringence. Ultralow birefringent waveguides (1 × 10-9) were obtained by controlling the cross sectional shape of the main waveguide and adjusting the position of the auxiliary lines. In addition, we prepared polarization-independent directional coupler and demonstrated the evolution of polarization-independent waveguide array with different polarized light. In the future, ultralow birefringent waveguides will be widely applied in polarization encoding and entangled quantum photonic integrated circuits.
RESUMEN
The implementation of transverse mode, polarization, frequency, and other degrees of freedom (d.o.f.s) of photons is an important way to improve the capability of photonic circuits. Here, a three-dimensional (3D) linear polarized (LP) LP11 mode converter was designed and fabricated using a femtosecond laser direct writing (FsLDW) technique. The converter included multi-mode waveguides, symmetric Y splitters, and phase delaying waveguides, which were constructed as different numbers and arrangements of circular cross section waveguides. Finally, the modes (LP11a and LP11b) were generated on-chip with a relatively low insertion loss (IL). The mode converter lays a foundation for on-chip high-order mode generation and conversion between different modes, and will play a significant role in mode coding and decoding of 3D photonic circuits.
RESUMEN
We developed a simple multi-foci-shaped femtosecond pulsed (MFSFP) method for processing circular cross section waveguides in transparent materials. With this flexible processing method, the focus energy distribution can be designed freely and arbitrarily, and single-mode waveguides with cross section circularity better than 96.0% were achieved. The mode shape difference (1.93%) of circular waveguides is smaller than the difference (7.01%) of normal elliptical waveguides. The coupling abilities of the two kinds of waveguides were investigated with three-dimensional (3D) directional couplers in both experiments and theoretical simulations. The coupling coefficient difference of circular waveguides in vertical and horizontal coupling directions was â¼0.01mm-1, which was smaller than 0.33mm-1 of normal waveguides. The circular symmetric waveguides will play an important role in large-scale high-intensity 3D photonic integrated circuits.
RESUMEN
We propose a precise diamond micromachining method based on ultraviolet femtosecond laser direct writing and a mixed acid heating chemical treatment. The chemical composition of the attached clusters generated during laser ablation and their effects on morphologies were investigated in experiments. The averaged roughness of pristine and processed regions reduced to 0.64 nm and 9.4 nm from 20.5 nm and 37.4 nm, respectively. With this method, spiral zone plates (SZPs) were inscribed on a high-pressure high-temperature diamond surface as micro-optical vortex generators. The optical performances of the diamond SZPs were characterized in both experiments and simulations, which were very consistent with each other. This chemical auxiliary processing method will contribute greatly to the wide application of integration and miniaturization of diamond surface optical components.
RESUMEN
Unique large-scale cooperation and fairness norms are essential to human society, but the emergence of prosocial behaviors is elusive. The fact that heterogeneous social networks prevail raised a hypothesis that heterogeneous networks facilitate fairness and cooperation. However, the hypothesis has not been validated experimentally, and little is known about the evolutionary psychological basis of cooperation and fairness in human networks. Fortunately, research about oxytocin, a neuropeptide, may provide novel ideas for confirming the hypothesis. Recent oxytocin-modulated network game experiments observed that intranasal administration of oxytocin to a few central individuals significantly increases global fairness and cooperation. Here, based on the experimental phenomena and data, we show a joint effect of social preference and network heterogeneity on promoting prosocial behaviors by building evolutionary game models. In the network ultimatum game and the prisoner's dilemma game with punishment, inequality aversion can lead to the spread of costly punishment for selfish and unfair behaviors. This effect is initiated by oxytocin, then amplified via influential nodes, and finally promotes global cooperation and fairness. In contrast, in the network trust game, oxytocin increases trust and altruism, but these effects are confined locally. These results uncover general oxytocin-initiated mechanisms underpinning fairness and cooperation in human networks.
RESUMEN
Pelagic sharks are vulnerable to overfishing due to slow growth rates, late-at-maturity and low fecundity, 90% of which are Near Threatened with an elevated risk of extinction according to IUCN Red List Criteria. Trace elements can be accumulated by marine predators and may have detrimental effects on population dynamics. In this study, we analyzed the concentrations of 11 trace elements (Zn, Cu, Cr, Ni, Mn, Se, Co, Hg, Cd, Pb, and As) in muscle and liver tissues of 10 pregnant pelagic thresher sharks (Alopias pelagicus) and their 18 embryos. The results showed that four essential elements (Cu, Cr, Mn, and Se) were accumulated in both tissue types of embryos. Ni and Zn concentrations were higher in embryonic muscle than that in the liver. For nonessential elements, concentrations of As, Cd and Hg in both embryonic tissues were lower than those of their mothers. Though maternal and embryonic tissues had high levels of Hg, the Se/Hg molar ratios in both tissues of the embryo were above 1 with larger values in the embryos, indicating that Se played a protective role against Hg toxicity in embryonic tissues. Liver is the primary energy resource of embryo development. There was no correlation for element concentrations between embryonic and maternal liver tissues, indicating there is a regulatory mechanism to maintain the stability of element contents during maternal transfer in pelagic thresher shark.
Asunto(s)
Tiburones , Oligoelementos , Animales , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Explotaciones Pesqueras , Océano Pacífico , Oligoelementos/análisisRESUMEN
Current therapeutic options for acute kidney injury (AKI) are limited to the use of supportive measures and dialysis. A recent approach that has sparked great interest and gained enormous popularity is the implantation of stem cells to repair acutely damaged kidney organ. Hypoxia inducible factor-1α (HIF-1α) is effective in protecting the kidney from ischemia and nephrotoxicity. In this study, we investigated whether HIF-1α-modified adipose-derived stem cells (ASCs) had an enhanced protective effect on cisplatin-induced kidney injury in vivo. Cisplatin-induced AKI was established in nude mice. Our study demonstrated that HIF-1α-modified ASCs obviously promoted the recovery of renal function, ameliorated the extent of histologic injury and reduced renal apoptosis and inflammation, but HIF-1α-modified ASCs homed to kidney tissues at very low levels after transplantation. In addition, we also found that HIF-1α-modified ASCs significantly increased HO-1 expression in cisplatin-induced AKI in vivo. Thus, our study indicated HIF-1α-modified ASCs implantation could provide advanced benefits in the protection again AKI, which will contribute to developing a new therapeutic strategy for the treatment of AKI.