Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatol Res ; 52(7): 614-629, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35366388

RESUMEN

AIM: Hepatocellular carcinoma (HCC) is common and causes many deaths worldwide. The aim of this study is to explore the mechanism by which long non-coding RNA FGD5-AS1 regulates HCC cell proliferation and stemness. METHODS: Tumor and normal adjacent tissues were harvested from HCC patients. Real-time quantitative reverse transcription-PCR was applied to examine the expression of FGD5-AS1, miR-223, Epithelial cell transforming sequence 2 (ECT2) and FAT1. The protein levels of ECT2, FAT1, proliferating cell nuclear antigen (PCNA), OCT4, CD133 and CD90 were analyzed by western blot. The localization of FGD5-AS1 was examined by Fluorescence in situ hybridization. Cell proliferation was analyzed with CCK-8 and colony formation assays. Spheroid formation was used for analyzing cell stemness. Gene interaction was examined by RNA immunoprecipitation and luciferase activity assays. A subcutaneous xenograft mouse model was established to analyze HCC growth and stemness in vivo. Immunohistochemistry staining was used to analyze the expression PCNA and OCT4 in subcutaneous tumors. RESULTS: FGD5-AS1 was upregulated in HCC and its high expression indicated poor prognosis of patients. High expression of FGD5-AS1 enhanced HCC cell proliferation and stemness. Knockdown of FGD5-AS1 restrained tumor growth and stemness in mice. FGD5-AS1 directly sponged miR-223 and promoted the expression of ECT2 and FAT1 in HCC. Both knockdown of miR-223 and overexpression of ECT2 and FAT1 reversed FGD5-AS1 silencing-mediated suppression of HCC cell proliferation and stemness. CONCLUSION: FGD5-AS1 directly sponged miR-223 and promoted the expression of ECT2 and FAT1 in HCC, thus enhancing HCC cell proliferation and stemness. Our study identifies potential prognostic biomarkers and therapeutic targets for HCC.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(12): 1376-1383, 2022 Dec 15.
Artículo en Zh | MEDLINE | ID: mdl-36544422

RESUMEN

OBJECTIVES: To investigate the effect of inhibiting miR-204 expression on the learning and memory abilities of neonatal rats with intrauterine growth restriction (IUGR) and related mechanism. METHODS: A rat model of IUGR was prepared by low-protein diet. The 3-day-old IUGR rats were divided into three groups: model, miRNA antagonist control and miR-204 antagonist, with 10 rats in each group. Ten normal neonatal rats served as the control group. Morris water maze test was used to measure the learning and memory abilities of the rats. Quantitative real-time PCR was used to measure the mRNA expression levels of miR-204 and brain-derived neurotrophic factor (BDNF) in the hippocampus. Nissl staining and TUNEL staining were used to observe the number of Nissl bodies and the apoptosis of cells in the hippocampus. Western blot was used to measure the expression levels of BDNF/TrkB signaling pathway-related proteins in the hippocampus. RESULTS: Compared with the control group, the model group had a significant increase in the escape latency and a significant reduction in the number of platform crossings (P<0.001). The model group also had significant increases in the apoptosis rate of cells and the expression level of miR-204 in hippocampal tissue (P<0.001), while the number of Nissl bodies, the mRNA expression level of BDNF, and the protein expression levels of BDNF, p-TrkB, and p-CREB in the model group were significantly reduced compared with the control group (P<0.001). After inhibition of the expression of miR-204, the number of Nissl bodies, the mRNA expression level of BDNF, and the protein expression levels of BDNF, p-TrkB, and p-CREB significantly increased, while the cell apoptosis rate and the expression level of miR-204 in the hippocampus significantly decreased. The escape latency was also reduced, while the number of platform crossings increased after inhibition of the expression of miR-204 (P<0.001). CONCLUSIONS: Inhibiting miR-204 can improve the learning and memory functions of neonatal rats with IUGR, possibly by targeted activation of the BDNF/TrkB signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Retardo del Crecimiento Fetal , Aprendizaje , Memoria , MicroARNs , Animales , Femenino , Ratas , Animales Recién Nacidos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo , Aprendizaje por Laberinto , MicroARNs/genética , Ratas Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , ARN Mensajero/metabolismo , Aprendizaje/fisiología , Memoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA