Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420794

RESUMEN

Estimating the gamma dose rate at one meter above ground level and determining the distribution of radioactive pollution from aerial radiation monitoring data are the core technical issues of unmanned aerial vehicle nuclear radiation monitoring. In this paper, a reconstruction algorithm of the ground radioactivity distribution based on spectral deconvolution was proposed for the problem of regional surface source radioactivity distribution reconstruction and dose rate estimation. The algorithm estimates unknown radioactive nuclide types and their distributions using spectrum deconvolution and introduces energy windows to improve the accuracy of the deconvolution results, achieving accurate reconstruction of multiple continuous distribution radioactive nuclides and their distributions, as well as dose rate estimation of one meter above ground level. The feasibility and effectiveness of the method were verified through cases of single-nuclide (137Cs) and multi-nuclide (137Cs and 60Co) surface sources by modeling and solving them. The results showed that the cosine similarities between the estimated ground radioactivity distribution and dose rate distribution with the true value were 0.9950 and 0.9965, respectively, which could prove that the proposed reconstruction algorithm would effectively distinguish multiple radioactive nuclides and accurately restore their radioactivity distribution. Finally, the influences of statistical fluctuation levels and the number of energy windows on the deconvolution results were analyzed, showing that the lower the statistical fluctuation level and the more energy window divisions, the better the deconvolution results.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radioisótopos de Cesio/análisis , Monitoreo de Radiación/métodos , Rayos gamma
2.
Microb Ecol ; 83(4): 1059-1072, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34302194

RESUMEN

The adaptability of herbivorous insects to toxic plant defense compounds is partly related to the structure of the gut microbiome. To overcome plant resistance, the insect gut microbiome should respond to a wide range of allelochemicals derived from dietary niches. Nevertheless, for sibling herbivorous insect species, whether the gut microbiome contributes to success in food niche competition is unclear. Based on 16S rDNA high-throughput sequencing, the gut microbiomes of two Apriona species that share the same food niche were investigated in this study to determine whether the gut microbiome contributes to insect success in food-niche competition. Our observations indicated that the gut microbiome tended to play a part in host niche competition between the two Apriona species. The gut microbiome of Apriona swainsoni had many enriched pathways that can help degrade plant toxic secondary compounds, including xenobiotic biodegradation and metabolism, terpenoid and polyketide metabolism, and secondary metabolite biosynthesis. Meanwhile, A. swainsoni hosted a much greater variety of microorganisms and had more viable bacteria than A. germari. We conclude that gut microbes may influence the coevolution of herbivores and host plants. Gut bacteria may not only serve to boost nutritional relationships, but may also play an important role in insect food niche competition.


Asunto(s)
Escarabajos , Microbioma Gastrointestinal , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Insectos , Plantas , ARN Ribosómico 16S/genética
3.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296504

RESUMEN

Chitosan (CS) and pea protein isolate (PPI) were used as raw materials to prepare nanoparticles. The structures and functional properties of the nanoparticles with three ratios (1:1, 1:2 1:3, CS:PPI) were evaluated. The particle sizes of chitosan-pea protein isolate (CS-PPI) nanoparticles with the ratios of 1:1, 1:2, and 1:3 were 802.95 ± 71.94, 807.10 ± 86.22, and 767.75 ± 110.10 nm, respectively, and there were no significant differences. Through the analysis of turbidity, endogenous fluorescence spectroscopy and Fourier transform infrared spectroscopy, the interaction between CS and PPI was mainly caused by electrostatic mutual attraction and hydrogen bonding. In terms of interface properties, the contact angles of nanoparticles with the ratio of 1:1, 1:2, and 1:3 were 119.2°, 112.3°, and 107.0°, respectively. The emulsifying activity (EAI) of the nanoparticles was related to the proportion of protein. The nanoparticle with the ratio of 1:1 had the highest potential and the best thermal stability. From the observation of their morphology by transmission electron microscopy, it could be seen that the nanoparticles with a ratio of 1:3 were the closest to spherical. This study provides a theoretical basis for the design of CS-PPI nanoparticles and their applications in promoting emulsion stabilization and the delivery of active substances using emulsions.


Asunto(s)
Quitosano , Nanopartículas , Proteínas de Guisantes , Quitosano/química , Proteínas de Guisantes/química , Emulsiones/química , Nanopartículas/química , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
4.
RSC Adv ; 14(5): 2889-2895, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239456

RESUMEN

For developing commercially viable LiNi1-x-yMnxCoyO2 (NCM), it is necessary to alleviate the irreversible chemical process upon Li-ion insertion/extraction, which primarily accounts for prevailing capacity loss, impedance buildup as well as low columbic efficiency. To resolve this issue, we herein propose a simple but novel method to alter the chemical composition by a facile treatment of H2O2, which remarkably reduces the cation mixing of Li+/Ni2+ and residual lithium on the cathode. The tailored composition contributes great resistance to the structural reconstruction and enhancement in structural reversibility, as shown by in situ Raman and high-resolution transmission electron microscope (HRTEM) results. Thus, the modified sample outperforms the pristine one; it exhibits cyclability with 95.7% capacity retention over 300 cycles, high columbic efficiency and enhanced rate capability.

5.
RSC Adv ; 14(17): 12247-12254, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38628474

RESUMEN

Ni-rich layered materials LiNi0.8Co0.1Mn0.1O2 attracts extensive interest to build high-performance lithium-ion batteries, but ground challenges, e.g., unfavorable phase transfer and interfacial parasitic reactions during cycling, especially after being exposure to the air for a long time, greatly limit their practical utilization. Here, we prove that those issues of Ni-rich layered materials can be alleviated by concurrently incorporating the Al3+ and PO34-, and conduct corresponding comprehensive studies to explore mechanisms of the enhanced electrochemical performances. It is suggested that the phase transition (H2 to H3) that related to the lattice contraction can be suppressed after Al3+ and PO34- co-doping, leading to improved cycling stability. Additionally, the co-doping successfully mitigates the chemical reaction between the Ni-based oxides and the ambient air, significantly improving the reversibility of lithium intercalation and charge transfer kinetics against long-time storage. Specifically, the Al3+ and PO34- co-doped material maintains 94.1% capacity retention of 150 cycles before storage, and 73.6% capacity retention of 100 cycles after being stored in ambient air for 30 days, which is much better than that of the undoped one.

6.
J Colloid Interface Sci ; 662: 846-856, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382369

RESUMEN

Transition metal selenides (TMS) have been used to prepare hundreds of electrode materials for ion batteries due to their superior theoretical capacity, but have been repeatedly limited by the sluggish reaction kinetics and the enormous volume change during the repeated charge/discharge process. Here, we report a facile strategy to fabricate organic-inorganic composites by engineering a unique chemical bonding interface between TMS and conductive polymers. For the first time, poly(3,4-ethylenedioxythiophene) (PEDOT) is utilized to encapsulate iron diselenide (FeSe2) nanoparticles by in situ polymerization, and the Fe-S bonds are meanwhile formed at the interface of FeSe2 and PEDOT. The experimental analysis demonstrates the stability of Fe-S bonds during the sodiation/desodiation process and after long cycling, which can serve as a "bridge" for fast charge transfer and also serve as a "rivet" to stabilize the composite structure. When used for sodium ion storage, the composite offers an exceptionally long lifetime of up to 17,000 loops at 10 A/g without capacity degradation. In addition, it delivers a high specific capacity of 490.4 mAh/g and retains 60 % when the current density is amplified 150 times. The assembled full cell also exhibits excellent cycling stability. This work will provide a feasible way to improve the metal oxide/sulfide/selenides for long-life ion batteries.

7.
Materials (Basel) ; 16(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895799

RESUMEN

Increasing the water-cement ratio and water-reducer dosage of cement slurry enhances its fluidity. However, a high water-cement ratio diminishes the beneficial effects of water reducers on fluidity. The stone content of the slurry decreases as the water-reducer dosage increases. Additionally, the water-cement ratio significantly affects stone content. However, when the water-cement ratio exceeds a threshold value, stone content decreases. Furthermore, the threshold value of the water-cement ratio decreases with increasing water-reducer dosage. Without the addition of the water reducer, as the water-cement ratio increases the overall integrity of the grout stone decreases. The addition of the water reducer alters the surface pore distribution, wherein "uniform small pores" change to "localized large pores." Based on the multi-objective optimization of Matlab, the recommended optimal mix composition for a slow-setting cement slurry is a water-cement ratio of 0.25 and water-reducer dosage of 1.5%. With the use of this optimized mix composition, the stone content and compressive strength increase by 7.8% and 145.6%, respectively, compared to those obtained using the recommended mix ratio in the specifications. Additionally, all relevant performance parameters meet the requirements specified by previous standards.

8.
Nat Commun ; 14(1): 6048, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770484

RESUMEN

As one of the most promising alternatives to graphite negative electrodes, silicon oxide (SiOx) has been hindered by its fast capacity fading. Solid electrolyte interphase (SEI) aging on silicon SiOx has been recognized as the most critical yet least understood facet. Herein, leveraging 3D focused ion beam-scanning electron microscopy (FIB-SEM) tomographic imaging, we reveal an exceptionally characteristic SEI microstructure with an incompact inner region and a dense outer region, which overturns the prevailing belief that SEIs are homogeneous structure and reveals the SEI evolution process. Through combining nanoprobe and electron energy loss spectroscopy (EELS), it is also discovered that the electronic conductivity of thick SEI relies on the percolation network within composed of conductive agents (e.g., carbon black particles), which are embedded into the SEI upon its growth. Therefore, the free growth of SEI will gradually attenuate this electron percolation network, thereby causing capacity decay of SiOx. Based on these findings, a proof-of-concept strategy is adopted to mechanically restrict the SEI growth via applying a confining layer on top of the electrode. Through shedding light on the fundamental understanding of SEI aging for SiOx anodes, this work could potentially inspire viable improving strategies in the future.

9.
Microbiome ; 10(1): 97, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752840

RESUMEN

BACKGROUND: Herbivorous insects acquire their gut microbiota from diverse sources, and these microorganisms play significant roles in insect hosts' tolerance to plant secondary defensive compounds. Camellia weevil (Curculio chinensis) (CW) is an obligate seed parasite of Camellia oleifera plants. Our previous study linked the CW's gut microbiome to the tolerance of the tea saponin (TS) in C. oleifera seeds. However, the source of these gut microbiomes, the key bacteria involved in TS tolerance, and the degradation functions of these bacteria remain unresolved. RESULTS: Our study indicated that CW gut microbiome was more affected by the microbiome from soil than that from fruits. The soil-derived Acinetobacter served as the core bacterial genus, and Acinetobacter sp. was putatively regarded responsible for the saponin-degradation in CW guts. Subsequent experiments using fluorescently labeled cultures verified that the isolate Acinetobacter sp. AS23 can migrate into CW larval guts, and ultimately endow its host with the ability to degrade saponin, thereby allowing CW to subsist as a pest within plant fruits resisting to higher concentration of defensive chemical. CONCLUSIONS: The systematic studies of the sources of gut microorganisms, the screening of taxa involved in plant secondary metabolite degradation, and the investigation of bacteria responsible for CW toxicity mitigation provide clarified evidence that the intestinal microorganisms can mediate the tolerance of herbivorous insects against plant toxins. Video Abstract.


Asunto(s)
Camellia , Saponinas , Gorgojos , Animales , Bacterias , Insectos , Suelo , Gorgojos/microbiología
10.
Microbiol Spectr ; 10(6): e0227222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36413019

RESUMEN

Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins.


Asunto(s)
Acinetobacter , Camellia , Saponinas , Gorgojos , Animales , Gorgojos/genética , Gorgojos/microbiología , Acinetobacter/genética , Camellia/genética , Saponinas/metabolismo , Transcriptoma , Larva/microbiología , Insectos , Bacterias/genética , Perfilación de la Expresión Génica , Genómica , Té/metabolismo
11.
Foods ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553816

RESUMEN

Due to its poor stability and rapid metabolism, the biological activity and absorption of epigallocatechin gallate (EGCG) is limited. In this work, EGCG-loaded bovine serum albumin (BSA)/pullulan (PUL) nanoparticles (BPENs) were successfully fabricated via self-assembly. This assembly was driven by hydrogen bonding, which provided the desired EGCG loading efficiency, high stability, and a strong antioxidant capacity. The encapsulation efficiency of the BPENs was above 99.0%. BPENs have high antioxidant activity in vitro, and, in this study, their antioxidant capacity increased with an increase in the EGCG concentration. The in vitro release assays showed that the BPENs were released continuously over 6 h. The Fourier transform infrared spectra (FTIR) analysis indicated the presence of hydrogen bonding, hydrophobic interactions, and electrostatic interactions, which were the driving forces for the formation of the EGCG carrier nanoparticles. Furthermore, the transmission electron microscope (TEM) images demonstrated that the BSA/PUL-based nanoparticles (BPNs) and BPENs both exhibited regular spherical particles. In conclusion, BPENs are good delivery carriers for enhancing the stability and antioxidant activity of EGCG.

12.
Small Methods ; 6(5): e2101591, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266326

RESUMEN

Due to the severe volume variations during electrochemical processes, Si-based anodes suffer from poor cycling performance as the result of a collapsed conductive network. In this regard, a key strategy for fully exploiting the capacity potential of Si-based anodes is to construct a robust conductive network through rational binder design. In this work, a bio-inspired conductive binder (PFPQDA) is designed by introducing dopamine-functionalized fluorene structure units (DA) into a conductivity enhanced polyfluorene-typed copolymer (PFPQ) to enhance its mechanical properties. Through constructing hierarchical binding networks and resilient electron transportations within both nano-sized Si and micro-sized SiOx electrodes via interweaved interactions, the PFPQDA successfully suppresses the electrode expansion and maintains the integrity of conductive pathways. Consequently, owing to the favorable properties of PFPQDA, Si-based anodes exhibit improved cycling performance and rate capability with an areal capacity over 2.5 mAh cm-2 .

13.
Insects ; 10(11)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689913

RESUMEN

The ectoparasitoid Dastarcus helophoroides Fairmaire (Coleoptera: Bothrideridae) is an important natural enemy insect, which is artificially mass-reared and released into woodland to control medium and large longhorn beetle species. This study examined the developmental duration (days) of larvae and adult fitness (including numbers of adults emerging per host and mean body size) by exposing a single substitute host, a pupa of Zophobas morio (Coleoptera: Tenebrionidae), to different densities of D. helophoroides larvae. We showed that there was no significant effect on the rate of successful parasitism and cocoon formation, but emergence success and measures of individual adult body size (length, width, and weight) declined with increasing larval density. Larval period and cocoon period increased with larval density, while total weight of adults emerging per host increased initially before reaching a plateau. Our results suggest that a pupa of Z. morio could be successfully parasitized by a single D. helophoroides larva, but multiple D. helophoroides larvae can share one host. Excessive larval density caused intraspecific competition among D. helophoroides larvae, manifesting in extended developmental duration of immature stage and reduced fitness of adults. Furthermore, the tradeoff between the numbers of adults and body size may stabilize the population dynamics with detectable mutual interference, particularly in competing for limited host resources. These findings suggest six larvae per host would achieve the highest adult fitness and would enhance mass-rearing techniques as part of IPM strategies for longhorn beetles.

14.
Biosens Bioelectron ; 24(4): 1054-8, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18782662

RESUMEN

A novel cheap and simple amperometric glucose biosensor, based on the electrode modified with the Ni/Al layered double hydroxide (LDH) nanoflakes and chitosan (CHT), without glucose oxidase, is presented. The glucose biosensor based on monodispersed high active Ni/Al-LDH nanoflakes and CHT exhibits an appropriate linear range of 0.01-10mM and good operational stability. The amperometric sensor shows a rapid response at the potential value 0.48V. In addition, optimization of the biosensor construction, the effects of the applied potential, the scan rate as well as common interfering compounds on the amperometric response and human serum samples analysis of the sensor were investigated and discussed.


Asunto(s)
Aluminio/química , Técnicas Biosensibles/instrumentación , Quitosano/química , Electroquímica/instrumentación , Glucosa Oxidasa/química , Glucosa/análisis , Níquel/química , Técnicas Biosensibles/métodos , Materiales Biocompatibles Revestidos/química , Diseño de Equipo , Análisis de Falla de Equipo , Hidróxidos/química , Nanopartículas/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA