Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(12): 2656-2671.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295403

RESUMEN

Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.


Asunto(s)
Brassica napus , Plasmodiophorida , Microscopía por Crioelectrón , Plomo , Brassica napus/genética , Plasmodiophorida/fisiología , Canales Iónicos , Enfermedades de las Plantas
2.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562403

RESUMEN

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Asunto(s)
Briófitas , Cambio Climático , Ecosistema , Aclimatación , Adaptación Fisiológica , Tibet , Briófitas/fisiología
3.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539781

RESUMEN

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Asunto(s)
Productos Agrícolas/genética , Domesticación , Oryza/genética , Sistemas CRISPR-Cas , Seguridad Alimentaria , Edición Génica , Variación Genética , Genoma de Planta , Oryza/clasificación , Poliploidía
4.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34051138

RESUMEN

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Asunto(s)
Ecotipo , Variación Genética , Genoma de Planta , Oryza/genética , Adaptación Fisiológica/genética , Agricultura , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Estructural del Genoma , Anotación de Secuencia Molecular , Fenotipo
5.
Cell ; 182(1): 162-176.e13, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553274

RESUMEN

Soybean is one of the most important vegetable oil and protein feed crops. To capture the entire genomic diversity, it is needed to construct a complete high-quality pan-genome from diverse soybean accessions. In this study, we performed individual de novo genome assemblies for 26 representative soybeans that were selected from 2,898 deeply sequenced accessions. Using these assembled genomes together with three previously reported genomes, we constructed a graph-based genome and performed pan-genome analysis, which identified numerous genetic variations that cannot be detected by direct mapping of short sequence reads onto a single reference genome. The structural variations from the 2,898 accessions that were genotyped based on the graph-based genome and the RNA sequencing (RNA-seq) data from the representative 26 accessions helped to link genetic variations to candidate genes that are responsible for important traits. This pan-genome resource will promote evolutionary and functional genomics studies in soybean.


Asunto(s)
Genoma de Planta , Glycine max/crecimiento & desarrollo , Glycine max/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , Domesticación , Ecotipo , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Fusión Génica , Geografía , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética , Poliploidía
6.
Plant J ; 113(4): 787-801, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575912

RESUMEN

Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated crops, and is a valuable resource to secure food diversity and combat drought stresses under the global warming scenario. However, due to the absence of extant diploid progenitors, the polyploidy genome of broomcorn millet remains poorly understood. Here, we report the chromosome-scale genome assembly of broomcorn millet. We divided the broomcorn millet genome into two subgenomes using the genome sequence of Panicum hallii, a diploid relative of broomcorn millet. Our analyses revealed that the two subgenomes diverged at ~4.8 million years ago (Mya), while the allotetraploidization of broomcorn millet may have occurred about ~0.48 Mya, suggesting that broomcorn millet is a relatively recent allotetraploid. Comparative analyses showed that subgenome B was larger than subgenome A in size, which was caused by the biased accumulation of long terminal repeat retrotransposons in the progenitor of subgenome B before polyploidization. Notably, the accumulation of biased mutations in the transposable element-rich subgenome B led to more gene losses. Although no significant dominance of either subgenome was observed in the expression profiles of broomcorn millet, we found the minimally expressed genes in P. hallii tended to be lost during diploidization of broomcorn millet. These results suggest that broomcorn millet is at the early stage of diploidization and that mutations likely occurred more on genes that were marked with lower expression levels.


Asunto(s)
Panicum , Panicum/genética , Tetraploidía , Filogenia , Genoma , Mutación , Genoma de Planta/genética
7.
Plant Biotechnol J ; 22(6): 1757-1772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38288521

RESUMEN

Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.


Asunto(s)
Cromosomas de las Plantas , Diploidia , Genoma de Planta , Medicago sativa , Medicago sativa/genética , Genoma de Planta/genética , Cromosomas de las Plantas/genética , Variación Genética
8.
Nature ; 557(7705): 424-428, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29743678

RESUMEN

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Filogenia , Triticum/clasificación , Triticum/genética , Altitud , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Variación Genética , Mapeo Geográfico , Anotación de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Sintenía/genética
9.
BMC Plant Biol ; 23(1): 606, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030968

RESUMEN

BACKGROUND: Dioecy, a sexual system of single-sexual (gynoecious/androecious) individuals, is rare in flowering plants. This rarity may be a result of the frequent transition from dioecy into systems with co-sexual individuals. RESULTS: In this study, co-sexual expression (monoecy and hermaphroditic development), previously thought to be polyploid-specific in Diospyros species, was identified in the diploid D. oleifeara historically. We characterized potential genetic mechanisms that underlie the dissolution of dioecy to monoecy and andro(gyno)monoecy, based on multiscale genome-wide investigations of 150 accessions of Diospyros oleifera. We found all co-sexual plants, including monoecious and andro(gyno)monoecious individuals, possessed the male determinant gene OGI, implying the presence of genetic factors controlling gynoecia development in genetically male D. oleifera. Importantly, discrepancies in the OGI/MeGI module were found in diploid monoecious D. oleifera compared with polyploid monoecious D. kaki, including no Kali insertion on the promoter of OGI, no different abundance of smRNAs targeting MeGI (a counterpart of OGI), and no different expression of MeGI between female and male floral buds. On the contrary, in both single- and co-sexual plants, female function was expressed in the presence of a genome-wide decrease in methylation levels, along with sexually distinct regulatory networks of smRNAs and their targets. Furthermore, a genome-wide association study (GWAS) identified a genomic region and a DUF247 gene cluster strongly associated with the monoecious phenotype and several regions that may contribute to andromonoecy. CONCLUSIONS: Collectively, our findings demonstrate stable breakdown of the dioecious system in D. oleifera, presumably also a result of genomic features of the Y-linked region.


Asunto(s)
Diospyros , Diospyros/genética , Diploidia , Estudio de Asociación del Genoma Completo , Genómica , Poliploidía
10.
BMC Musculoskelet Disord ; 24(1): 826, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858123

RESUMEN

BACKGROUND: Most displaced femoral neck fractures can achieve satisfactory anatomical reduction by closed reduction, but there are still some that cannot reset satisfactorily after closed reduction, and open reduction are required. Such fractures that cannot be repositioned successfully by closed reduction are called irreducible displaced femoral neck fractures in this study. The objective of our study was to evaluate the efficacy of direct anterior incision with the Femoral Neck System in the treatment of irreducible displaced femoral fractures. METHODS: A total of 16 young and middle-aged patients with irreducible displaced femoral neck fractures involving Garden type III and IV were treated using Femoral Neck System fixation by open reduction through Direct Anterior Approach between January 2020 to September 2021. Functional outcomes and postoperative complications were assessed during follow-up. Clinical outcomes were evaluated by the Hip Harris score. The postoperative reduction was evaluated by the Garden Index. Observe postoperative complications. RESULTS: All patients were followed up with a mean follow-up time of 21.1(12-30) months, and according to radiological results, all patients achieved fracture healing, with a mean healing time of 4.25 months. All 16 patients received grade Garden I and II reductions, and there was no significant difference in the anteroposterior Garden reduction index between the first day after surgery (166.13 ± 5.61) and the 12th month after surgery(164.94 ± 4.49) (P>0.05) and no significant difference in lateral Garden index between the first day after surgery(171.06 ± 4.46) and the 12th month after surgery(169.38 ± 3.98) (P<0.05). According to the Hip Harris score scale, 13 patients received excellent and 3 patients received good. The postoperative Hip Harris Score(17.19 ± 4.8) was significantly higher than the preoperative score(92.19 ± 3.4), and the difference was statistically significant (P < 0.05). No or mild femoral neck shortness occurred in 12 (75%) patients, moderate shortening occurred in 3 (18.75%) patients, and severe shortening occurred in 1 (6.25%) patient. None of the patients experienced femoral head necrosis, fracture nonunion, or incision infection. One patient developed deep venous thrombosis of the lower extremity. CONCLUSIONS: The Direct Anterior Approach combined with Femoral Neck System is an excellent treatment for irreducible displaced femoral neck fracture and achieved good functional outcomes and anatomical reduction with low complications.


Asunto(s)
Fracturas del Cuello Femoral , Cuello Femoral , Persona de Mediana Edad , Humanos , Fijación Interna de Fracturas/métodos , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/cirugía , Reducción Abierta , Infección de la Herida Quirúrgica , Resultado del Tratamiento , Estudios Retrospectivos
11.
Immunopharmacol Immunotoxicol ; 45(3): 334-346, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36351297

RESUMEN

Objective: We aimed to explore immune-related prognosis genes of lung adenocarcinoma (LUAD).Materials and methods: TCGA-LUAD and GSE31210 data sets were accessed from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) respectively. By using "WGCNA" R package, we established a gene co-expression network and clustered genes into various modules. The correlation between immune scores and module eigengenes by using Pearson analysis. Screened hub genes and constructed prognostic model by using LASSO and Cox regression analysis. Evaluated model by survival analysis and receiver operating characteristic (ROC) curves. Hub genes expression in clinical tissues of LUAD patients by qRT-PCR analysis. ssGSEA and TIMER (a website tool for examination of different immune cells in different cancers) analyzed immune correlation of hub genes. Gene set variation analysis (GSVA) uncovered difference of signal pathway between high- and low-risk score group.Results: We found that brown module significantly correlated with the immune scores of immune cells. Therefore, we constructed a 7-gene prognostic model based on brown module genes, and indicated that this model possessed good predictive performance. Patients in training and validation sets were stratified into the high- and low-risk group using this model. Also, hub genes CDCP1, PLSCR1 and CD79A were highly expressed in clinical tissues of LUAD patients, while ID1, CLEC7A, KIAA1324 and CMTM7 were lowly expressed. Both ssGSEA and TIMER revealed a significant negative correlation between risk score and B cell infiltration. Additionally, some signal pathways were suppressed in the high-risk group.Conclusion: We identified 7 immune-associated prognostic markers, which may play vital roles in LUAD and could be used as hopeful targets for immunotherapy of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Factores de Riesgo , Neoplasias Pulmonares/genética , Biomarcadores , Antígenos de Neoplasias , Moléculas de Adhesión Celular , Quimiocinas , Proteínas con Dominio MARVEL
12.
J Integr Plant Biol ; 65(6): 1423-1441, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36680412

RESUMEN

Common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum), the two most widely cultivated buckwheat species, differ greatly in flavonoid content and reproductive mode. Here, we report the first high-quality and chromosome-level genome assembly of common buckwheat with 1.2 Gb. Comparative genomic analysis revealed that common buckwheat underwent a burst of long terminal repeat retrotransposons insertion accompanied by numerous large chromosome rearrangements after divergence from Tartary buckwheat. Moreover, multiple gene families involved in stress tolerance and flavonoid biosynthesis such as multidrug and toxic compound extrusion (MATE) and chalcone synthase (CHS) underwent significant expansion in buckwheat, especially in common buckwheat. Integrated multi-omics analysis identified high expression of catechin biosynthesis-related genes in flower and seed in common buckwheat and high expression of rutin biosynthesis-related genes in seed in Tartary buckwheat as being important for the differences in flavonoid type and content between these buckwheat species. We also identified a candidate key rutin-degrading enzyme gene (Ft8.2377) that was highly expressed in Tartary buckwheat seed. In addition, we identified a haplotype-resolved candidate locus containing many genes reportedly associated with the development of flower and pollen, which was potentially related to self-incompatibility in common buckwheat. Our study provides important resources facilitating future functional genomics-related research of flavonoid biosynthesis and self-incompatibility in buckwheat.


Asunto(s)
Fagopyrum , Flavonoides , Flavonoides/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Rutina/análisis , Rutina/metabolismo , Genes de Plantas , Semillas/genética
13.
Plant J ; 107(3): 956-968, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34043857

RESUMEN

The bottle gourd (Lagenaria siceraria, Cucurbitaceae) is an important horticultural crop exhibiting tremendous diversity in fruit shape. The genetic architecture of fruit shape variation in this species remains unknown. We assembled a long-read-based, high-quality reference genome (ZAAS_Lsic_2.0) with a contig N50 value over 390-fold greater than the existing reference genomes. We then focused on dissection of fruit shape using a one-step geometric morphometrics-based functional mapping approach. We identified 11 quantitative trait loci (QTLs) responsible for fruit shape (fsQTLs), reconstructed their visible effects and revealed syntenic relationships of bottle gourd fsQTLs with 12 fsQTLs previously reported in cucumber, melon or watermelon. Homologs of several well-known and newly identified fruit shape genes, including SUN, OFP, AP2 and auxin transporters, were comapped with bottle gourd QTLs.


Asunto(s)
Cucurbitaceae/genética , Cucurbitaceae/fisiología , Frutas/anatomía & histología , Frutas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/fisiología , Sitios de Carácter Cuantitativo , Sintenía
14.
Nucleic Acids Res ; 48(D1): D1085-D1092, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31624841

RESUMEN

To date, large amounts of genomic and phenotypic data have been accumulated in the fields of crop genetics and genomic research, and the data are increasing very quickly. However, the bottleneck to using big data in breeding is integrating the data and developing tools for revealing the relationship between genotypes and phenotypes. Here, we report a rice sub-database of an integrated omics knowledgebase (MBKbase-rice, www.mbkbase.org/rice), which integrates rice germplasm information, multiple reference genomes with a united set of gene loci, population sequencing data, phenotypic data, known alleles and gene expression data. In addition to basic data search functions, MBKbase provides advanced web tools for genotype searches at the population level and for visually displaying the relationship between genotypes and phenotypes. Furthermore, the database also provides online tools for comparing two samples by their genotypes and finding target germplasms by genotype or phenotype information, as well as for analyzing the user submitted SNP or sequence data to find important alleles in the germplasm. A soybean sub-database is planned for release in 3 months and wheat and maize will be added in 1-2 years. The data and tools integrated in MBKbase will facilitate research in crop functional genomics and molecular breeding.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Oryza/genética , Fitomejoramiento , Genes de Plantas , Genoma de Planta , Genotipo , Programas Informáticos , Diseño de Software , Interfaz Usuario-Computador , Navegador Web
15.
BMC Musculoskelet Disord ; 23(1): 370, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443641

RESUMEN

BACKGROUND: The surgical treatment of complex acetabular fractures is one of the most challenging procedures for orthopedic surgeons. The Pararectus approach, as a reasonable alternative to the existing surgical procedures, was performed for the treatment of acetabular fractures involving the anterior column. This study aimed to evaluate outcome using the Pararectus approach for acetabular fractures involving anterior columns. METHODS: Thirty-seven with displaced acetabular fractures involving anterior columns were treated between July 2016 and October 2019 using the Pararectus approach. The functional outcomes (using the Merle d Aubigné and Postel scoring system, WOMAC and modified Harris scoring), the quality of surgical reduction (using the Matta criteria), and postoperative complications were assessed during approximately 26 months follow-up period. RESULTS: Thirty-seven patients (mean age 53 years, range: 30-71; 28 male) underwent surgery. Mean intraoperative blood loss was 840 ml (rang: 400-2000 ml) and mean operating time was 210 min (rang: 140-500 min). The modified Merle d Aubigné score was excellent and good in 27 cases (73%), fair in 6 cases (16%), and poor in 3 cases (11%). The mean score was 88.5 (range:77-96) for the modified Harris Hip scores, and 22 (range:7-35) for the WOMAC scores after operation. Postoperative functional outcomes were significantly improved compared with preoperative outcomes (P < 0.0001). The quality of reduction was anatomical in 21 cases (57%), satisfactory in 9 cases (24%), and unsatisfactory in 7 cases (19%). At follow-up, four patients developed a DVT, and heterotopic bone formation was observed in one patient. The hip osteoarthritis was not observed. CONCLUSION: The Pararectus approach achieved good functional outcomes and anatomical reduction in the treatment of acetabular fractures involving anterior column with minimal access morbidity.


Asunto(s)
Fracturas Óseas , Fracturas de Cadera , Traumatismos del Cuello , Fracturas de la Columna Vertebral , Acetábulo/diagnóstico por imagen , Acetábulo/lesiones , Acetábulo/cirugía , Femenino , Fijación Interna de Fracturas/efectos adversos , Fijación Interna de Fracturas/métodos , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Fracturas de Cadera/cirugía , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
16.
Mol Breed ; 41(12): 75, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37309514

RESUMEN

Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in the identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using genotyping by sequencing (GBS) method. A total of seven QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explains 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified using the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01268-3.

17.
Bioinformatics ; 35(3): 361-364, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032165

RESUMEN

Motivation: The complex cellular networks underlying phenotypes are formed by the interacting gene modules. Building and analyzing genome-wide and high-quality Gene Co-expression Networks (GCNs) is useful for uncovering these modules and understanding the phenotypes of an organism. Results: Using large-scale RNA-seq samples, we constructed high coverage and confident GCNs in two monocot species rice and maize, and two eudicot species Arabidopsis and soybean, and subdivided them into co-expressed gene modules. Taking rice as an example, we discovered many interesting and valuable modules, for instance, pollen-specific modules and starch biosynthesis module. We explored the regulatory mechanism of modules and revealed synergistic effects of gene expression regulation. In addition, we discovered that the modules conserved among plants participated in basic biological processes, whereas the species-specific modules were involved in spatiotemporal-specific processes linking genotypes to phenotypes. Our study suggests gene regulatory relationships and modules relating to cellular activities and agronomic traits in several model and crop plants, and thus providing a valuable data source for plant genetics research and breeding. Availability and implementation: The analyzed gene expression data, reconstructed GCNs, modules and detailed annotations can be freely downloaded from ftp://47.94.193.106/pub. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , Genes de Plantas , Análisis de Secuencia de ARN , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , ARN de Planta/genética , Glycine max/genética , Zea mays/genética
18.
Plant J ; 96(2): 421-437, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30047180

RESUMEN

Sperm cell (SC) lineage development from the haploid microspore to SCs represents a unique biological process in which the microspore generates a larger vegetative cell (VC) and a smaller generative cell (GC) enclosed in the VC, then the GC further develops to functionally specified SCs in the VC for double fertilization. Understanding the mechanisms of SC lineage development remains a critical goal in plant biology. We isolated individual cells of the three cell types, and characterized the genome-wide atlas of long non-coding (lnc) RNAs and mRNAs of haploid SC lineage cells. Sperm cell lineage development involves global repression of genes for pluripotency, somatic development and metabolism following asymmetric microspore division and coordinated upregulation of GC/SC preferential genes. This process is accompanied by progressive loss of the active marks H3K4me3 and H3K9ac, and accumulation of the repressive methylation mark H3K9. The SC lineage has a higher ratio of lncRNAs to mRNAs and preferentially expresses a larger percentage of lncRNAs than does the non-SC lineage. A co-expression network showed that the largest set of lncRNAs in these nodes, with more than 100 links, are GC-preferential, and a small proportion of lncRNAs co-express with their neighboring genes. Single molecular fluorescence in situ hybridization showed that several candidate genes may be markers distinguishing the three cell types of the SC lineage. Our findings reveal the molecular programming and potential roles of lncRNAs in SC lineage development.


Asunto(s)
Genoma de Planta/genética , ARN Largo no Codificante/genética , Solanum lycopersicum/genética , Linaje de la Célula , Perfilación de la Expresión Génica , Histonas , Hibridación Fluorescente in Situ , Solanum lycopersicum/fisiología , Metilación , Polen/genética , Polen/fisiología , ARN Mensajero/genética , ARN de Planta/genética
19.
Plant Physiol ; 177(3): 1108-1123, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29764927

RESUMEN

Cold stress is a major factor limiting rice (Oryza sativa) production worldwide, especially at the seedling and booting stages. The identification of genes associated with cold tolerance (CT) in rice is important for sustainable food production. Here, we report the results of a genome-wide association study to identify the genetic loci associated with CT by using a 1,033-accession diversity panel. We identified five CT-related genetic loci at the booting stage. Accessions carrying multiple cold-tolerant alleles displayed a higher seed-setting rate than did accessions that had no cold-tolerant alleles or carried a single allele. At the seedling stage, eight genetic loci related to CT have been identified. Among these, LOC_Os10g34840 was identified as the candidate gene for the qPSR10 genetic locus that is associated with CT in rice seedlings. A single-nucleotide polymorphism (SNP), SNP2G, at position 343 in LOC_Os10g34840 is responsible for conferring CT at the seedling stage in rice. Further analysis of the haplotype network revealed that SNP2G was present in 80.08% of the temperate japonica accessions but only 3.8% of the indica ones. We used marker-assisted selection to construct a series of BC4F3 near-isogenic lines possessing the cold-tolerant allele SNP2G When subjected to cold stress, plants carrying SNP2G survived better as seedlings and showed higher grain weight than plants carrying the SNP2A allele. The CT-related loci identified here and the functional verification of LOC_Os10g34840 will provide genetic resources for breeding cold-tolerant varieties and for studying the molecular basis of CT in rice.


Asunto(s)
Alelos , Respuesta al Choque por Frío/genética , Oryza/genética , Proteínas de Plantas/genética , Respuesta al Choque por Frío/fisiología , Estudio de Asociación del Genoma Completo , Haplotipos , Oryza/fisiología , Filogenia , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Plantones/genética , Plantones/fisiología
20.
Proc Natl Acad Sci U S A ; 113(41): E6026-E6035, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663737

RESUMEN

Hybrid rice is the dominant form of rice planted in China, and its use has extended worldwide since the 1970s. It offers great yield advantages and has contributed greatly to the world's food security. However, the molecular mechanisms underlying heterosis have remained a mystery. In this study we integrated genetics and omics analyses to determine the candidate genes for yield heterosis in a model two-line rice hybrid system, Liang-you-pei 9 (LYP9) and its parents. Phenomics study revealed that the better parent heterosis (BPH) of yield in hybrid is not ascribed to BPH of all the yield components but is specific to the BPH of spikelet number per panicle (SPP) and paternal parent heterosis (PPH) of effective panicle number (EPN). Genetic analyses then identified multiple quantitative trait loci (QTLs) for these two components. Moreover, a number of differentially expressed genes and alleles in the hybrid were mapped by transcriptome profiling to the QTL regions as possible candidate genes. In parallel, a major QTL for yield heterosis, rice heterosis 8 (RH8), was found to be the DTH8/Ghd8/LHD1 gene. Based on the shared allelic heterozygosity of RH8 in many hybrid rice cultivars, a common mechanism for yield heterosis in the present commercial hybrid rice is proposed.


Asunto(s)
Genoma de Planta , Vigor Híbrido/genética , Hibridación Genética , Oryza/genética , Oryza/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Transcriptoma , Alelos , Mapeo Cromosómico , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligamiento Genético , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA