Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Inorg Chem ; 62(14): 5863-5871, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36976914

RESUMEN

It is difficult to subject simple reaction starting materials to a "one-pot" in situ tandem reaction without post-treatment under mild reaction conditions to obtain multimers with complex structural linkages. In organic synthesis, acetal reactions are often used to protect derivatives containing carbonyl functional groups. Therefore, acetal products tend to have very low stability, and performing multi-step condensation to obtain complex multimeric products is difficult. Herein, we achieved the first efficient multiple condensation of o-vanillin derivatives using Dy(OAc)3·6H2O undergoing a "one-pot" in situ tandem reaction under mild solvothermal conditions to obtain a series of dimers (I and II, clusters 1 and 2) and trimers (I and II, clusters 3 and 4). When methanol or ethanol is used as the solvent, the alcoholic solvent participates in acetal and dehydration reactions to obtain dimers (I and II). Surprisingly, when using acetonitrile as the reaction solvent, the o-vanillin derivatives undergo acetal and dehydration reactions to obtain trimers (I and II). In addition, clusters 1-4 all showed distinct single-molecule magnetic behaviors under zero-field conditions. To the best of our knowledge, this is the first time that multiple acetal reactions catalyzed by coordination-directed catalysis under "one-pot" conditions have been realized, opening a new horizon for the development of fast, facile, green, and efficient synthetic methods for complex compounds.

2.
Inorg Chem ; 62(48): 19552-19564, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37976457

RESUMEN

Pinacol lanthanide complexes PyraLn (Ln = Dy and Tb) with the restriction of intramolecular vibration were obtained for the first time via an in situ solvothermal coordination-catalyzed tandem reaction using cheap and simple starting materials, thereby avoiding complex, time-consuming, and expensive conventional organic synthesis strategies. A high-resolution electrospray ionization mass spectrometry (HRESI-MS) analysis confirmed the stability of PyraLn in an organic solution. The formation process of PyraLn was monitored in detail using time-dependent HRESI-MS, which allowed for proposing a mechanism for the formation of pinacol complexes via in situ tandem reactions under one-pot coordination-catalyzed conditions. The PyraLn complexes constructed using a pinacol ligand with a butterfly configuration exhibited distinct aggregation-induced emission (AIE) behavior, with the αAIE value as high as 60.42 according to the AIE titration curve. In addition, the PyraLn complexes in the aggregated state exhibit a rapid photoresponse to various 3d metal ions with low detection limits. These findings provide fast, facile, and high-yield access to dynamic, smart lanthanide complex emissions with bright emission and facilitate the rational construction of molecular machines for artificial intelligence.

3.
Inorg Chem ; 61(26): 10101-10107, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35709380

RESUMEN

Lanthanoid metal ions have large ionic radii, complex coordination modes, and easy distortion of coordination spheres, but the design and synthesis of high-nucleation lanthanoid clusters with high stability in solution (especially aqueous solution) are challenging. Herein, a diacylhydrazone ligand (H2L1) with multidentate chelating coordination sites was used to react with Dy(OAc)3·4H2O under solvothermal conditions to obtain an example of a 34-nucleus crown-shaped dysprosium cluster [Dy34(L)8(µ2-OH)(µ3-OH)21(µ3-O)14(OAc)31(OCH3)2(H2O)15](OAc)3 (1). Structural analysis showed that the bisacylhydrazone ligand H2L1 with polydentate chelate coordination sites could rapidly capture DyIII ions, thereby forming 34-nucleus crown-shaped dysprosium cluster 1 following the out-to-in growth mechanism. Cluster 1 remained stable after immersion in solutions with different pH values (3-14) for 24 h. To the best of the authors' knowledge, high-nucleation lanthanoid clusters with excellent strong acid and base stability and water stability are very rare. Meanwhile, high-resolution electrospray mass spectrometry molecular ion peaks produced by cluster 1 were captured, which proved to be stable also in organic solvents. Magnetic research showed that cluster 1 exhibited frequency-dependent behavior. This work provides a new idea for designing and synthesizing high-nucleation lanthanoid clusters with high stability.

4.
Inorg Chem ; 61(16): 6094-6100, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35416660

RESUMEN

A three-dimensional supermolecule structure is easily formed due to the diverse coordination modes of high-oxidation-state lanthanide metal ions. However, the design and construction of zero-dimensional (0 D) dish-shaped high-nuclearity lanthanide clusters are difficult. Herein, for the first time, we synthesized a series of the largest dish-shaped high-nuclearity lanthanide nanoclusters (1-4) by in situ tandem reactions under solvothermal one-pot conditions. The formation of 1 and 2 involved an in situ reaction of aldehydes and amines, while the condensation reactions between aldehydes occurred in 3 and 4. Based on the structural characteristics of the dish-shaped lanthanide clusters, we proposed two possible assembly mechanisms involving Dy1 → Dy7 → Dy13 → Dy19 (planar epitaxial growth mechanism) and Dy1 → Dy12 → Dy18 → Dy19 (planar internal growth mechanism).

5.
Inorg Chem ; 61(8): 3655-3663, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35167747

RESUMEN

A full understanding of the assembly mechanisms of coordination complexes is of great importance for a directional synthesis under control. We thus explored here the formation mechanisms of the two new heterometallic nanoclusters [DyIII4NiII8(µ3-OH)8(L)8(OAc)4(H2O)4]·3.25EtOH·4CH3CN (1) and [DyIII10MnIII4MnII2O4(OH)12(OAc)16(L)4(HL)2(EtOH)2]·2EtOH·2CH3CN·2H2O (2) with different cubane-based squarelike ring structures, which were obtained from the reactions of 4-bromo-2-[(2-hydroxypropylimino)methyl]phenol (H2L) with Dy(NO)3·6H2O and the transition metal salt Ni(OAc)2·4H2O or Mn(OAc)2·4H2O. The high-resolution electrospray ionization mass spectrometry (HRESI-MS) tests showed that the skeletons of clusters 1 and 2 have a high stability under the measurement conditions for HRESI-MS. The intermediates formed in the reaction courses of clusters 1 and 2 were tracked using time-dependent HRESI-MS, which helped to determine the proposed hierarchical assembly mechanisms for 1 (H2L → NiL → Ni2L2 → Ni3L4 → Ni4L4 → DyNi4L5 → Dy2Ni6L6 → Dy3Ni6L6 → Dy3Ni7L7 → Dy4Ni8L8) and 2 (H2L → MnL → DyMnL → DyMn2L → Dy2Mn2Lx → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx and H2L → DyL → Dy4L2 → Dy6L2 → Dy8Mn2L2 → Dy10Mn2L2 → Dy10Mn6Lx). This is one of the rare examples of investigating the assembly mechanisms of 3d-4f heterometallic clusters. Magnetic studies indicated that the title complexes both show slow magnetic relaxation behaviors and cluster 1 is a field-induced single-molecule magnet.

6.
Inorg Chem ; 61(50): 20513-20523, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36475643

RESUMEN

By changing the coordination anions (OAc- and Cl-), reaction temperature, solvent, and ligand substituents, four Dy(III)-based complexes were obtained by directed synthesis, which are [Dy4(L1)2(L2)2(OAc)4]·4C2H5OH·3H2O (1, L1 = 1,3,4-thiadiazole-2,5-diamine, H4L2 = 6,6'-(((1,3,4-thiadiazole-2,5-diyl)bis(azanediyl))bis(((3-ethoxy-2-hydroxybenzyl)oxy)methylene))bis(2-ethoxyphen), [Dy4(L3)4(OAc)4]·C2H5OH·H2O (2, H3L3 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)((3-ethoxy-2-hydroxybenzyl)oxy)methyl)-6-ethoxyphenol)), [Dy6(L4)4(L5)2(µ3-OH)4(CH3O)4Cl4]Cl2 (3, H2L4 = 2-hydroxy-3-methoxybenzaldehyde, H2L5 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-methoxyphenol), and [Dy6(L6)4(L7)2(µ3-OH)4(CH3O)4Cl4]Cl2·2H3O (4, H2L6 = 2-hydroxy-3-ethoxybenzaldehyde, H2L7 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-ethoxyphenol). A series of acetal products (H4L2, H3L3, H2L5, and H2L7) were obtained through dehydration in situ tandem reactions. Magnetic studies show that complexes 1-4 exhibited different single-molecule magnet behavior under zero-field conditions. The best fitting results showed that under zero DC field, the effective energy barriers (Ueff) and magnetic relaxation times (τ0) of complexes 1-4 are Ueff = 117.0 (2.1) K and τ0 = 6.07 × 10-7 s; Ueff = 83.91 (1.5) K and τ0 = 4.28 × 10-7 s; Ueff = 1.28 (0.2) K and τ0 = 0.73 s, and Ueff = 104.43 (13.3) K and τ0 = 8.25 × 10-8 s, respectively.

7.
Inorg Chem ; 61(49): 20169-20176, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36445983

RESUMEN

Widespread concern has been raised over the synthesis of highly nucleated lanthanide clusters with special shapes and/or specific linkages. Construction of lanthanide clusters with specific shapes and/or linkages can be achieved by carefully regulating the hydrolysis of lanthanide metal ions and the resulting hydrolysis products. However, studies on the manipulation of lanthanide-ion hydrolysis to obtain giant lanthanide-oxo clusters have been few. In this study, we obtained a tetraicosa lanthanide cluster (3) by manipulating the hydrolysis of Dy(III) ions using an anion (OAc-). As far as we know, cluster 3 has the highest nucleation among all lanthanide-oxo clusters reported. In 3, two triangular Dy3O4 are oriented in opposite directions to form the central connecting axis Dy6(OH)8, which is in turn connected to six Dy3O4 that are oriented in different directions. Meanwhile, a sample of a chiral trinuclear dysprosium cluster (1) was obtained in a mixed CH3OH and CH3CN solvent and by replacing the anion in the reaction to Cl- ions. In this cluster, 1,3,4-thiadiazole-2,5-diamine (L2) is free on one side through π···π interactions and is parallel to the o-vanillin (L1)- ligand, thus resulting in a triangular arrangement. The arrangement of L2 affects the end group coordination in the cluster 1 structure through hydrogen bonding and induces the cluster to exhibit chirality. When the reaction solvent was changed to CH3OH, a sample of cluster 2, composed of two independent triangular Dy3 that have different end group arrangements, was obtained. Magnetic analysis showed that clusters 1 and 3 both exhibit distinctive single-molecule magnetic properties under zero-magnetic-field conditions. This study thus provides a method for the creation of chiral high-nucleation clusters from achiral ligands and potentially paves the way for the synthesis of high-nucleation lanthanide clusters with unique forms.


Asunto(s)
Elementos de la Serie de los Lantanoides , Elementos de la Serie de los Lantanoides/química , Aniones , Ligandos , Hidrólisis , Iones
8.
Inorg Chem ; 60(21): 16794-16802, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668696

RESUMEN

The serialized expansion of high-nuclear clusters usually includes the controlled variable method and changes only a single variable. However, changing both variables will greatly increase the complexity of the reaction simultaneously. Therefore, the use of a two-component regulation reaction is rare. Herein, we used a diacylhydrazone ligand (H4L1) with multidentate chelating coordination sites for the reaction with Gd(NO3)3·6H2O under solvothermal conditions to obtain an example of 16-nucleus disc-shaped cluster 1 with a brucite structure. The overall structure of cluster 1 can be regarded as an equilateral triangle, which is formed by three (L1)4- ions that can be regarded as "sides" and wrap the four-layer metal center Gd(III) ions. Notably, upon simultaneous regulation of the substituent of the ligand and the coordination anion, heptanuclear gadolinium cluster 2 was obtained. Cluster 2 can be regarded as a butterfly structure, which was formed by connecting two Gd3L2 molecules that were not in the same plane and through the central Gd(III) ion as an intersection. Moreover, hexanuclear gadolinium cluster 3 was obtained by changing the ligand substituent and adding an auxiliary ligand. Cluster 3 can be regarded as a chair structure, which was composed of two molecules of diacylhydrazone ligand (L2)4- wrapping vacant cubane shared by four vertices. This study was the first to construct a series of high-nuclear gadolinium clusters through two-component regulation manipulation. The study of the magnetocaloric effect showed that the maximum values of -ΔSm for clusters 1-3 were 34.05, 29.04, and 24.32 J kg-1 K-1, respectively, when T = 2 K and ΔH = 7 T.

9.
Inorg Chem ; 60(7): 4904-4914, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729775

RESUMEN

The aggregation and formation of heterometallic nanoclusters usually involves a variety of complex self-assembly processes; thus, the exploration of their assembly mechanisms through process tracking is more challenging than that for homometallic nanoclusters. We explored here the effect of solvent on the formation of heterometallic clusters, which gave two heterometallic nanoclusters, [Dy2Co8(µ3-OCH3)2(L)4(HL)2(OAc)2(NO3)2(CH3CN)2]·CH3CN·H2O (1) and [Dy4Co6(L)4(HL)2(OAc)6(OCH2CH2OH)2(HOCH2CH2OH)(H2O)]·9CH3CN (2), with the H3L ligand formed from the in situ condensation reaction of 3-amino-1,2-propanediol with 2-hydroxy-1-naphthaldehyde in the presence of Co(OAc)2·4H2O and Dy(NO)3·6H2O. It is worth noting that the skeleton of cluster 1 has a high stability under high-resolution electrospray ionization mass spectrometry (HRESI-MS) conditions with a gradually increasing energy of the ion source. Cluster 2 underwent a multistep fragmentation even under a zero ion-source voltage for the measurement of HRESI-MS. Further analysis showed that cluster 2 underwent a possible fragmentation mechanism of Dy4Co6L6 → Dy2Co6L5/DyL → DyCo2L3/DyCo2L → DyL/Co2L2. Most notably, the species emerging in the formation process of cluster 1 were tracked using time-dependent HRESI-MS, from which we proposed its possible formation mechanism of H2L → Co2L2 → Co2DyL2/Co3L2 → Co3DyL2 → Co4DyL2 → Co5Dy2L4 → Co8Dy2L6. As far as we know, it is the first time to track the formation process of Dy-Co heterometallic clusters through HRESI-MS with the proposed assembly mechanism. The magnetic properties of the two titled DyIIIxCoII10-x (x = 2, 4) clusters were studied. Both of them exhibit slow magnetic relaxation, and 1 is a single-molecule magnet at zero direct-current field.

10.
J Lumin ; 2322021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34565833

RESUMEN

Six dinuclear lanthanide(III) nitrato complexes [Ln(NO3)3(H2O)]2(µ-tppz) (where tppz = 2,3,5,6-tetra(2-pyridyl) pyrazine and Ln(III) = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), and Dy (6)) with bis-tridentate N-heterocyclic 2,3,5,6-tetra(2-pyridyl)pyrazine as bridging ligand have been solvothermally synthesized and characterized via elemental analysis, infrared spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder X-ray diffraction. The 3-D Hirshfeld surface and 2-D fingerprint plots show that the main interactions in 1-6 are the O⋯H/H⋯O intermolecular interactions with relative contributions of about 62%. Although the poor lanthanide(III)-centered luminescence properties clearly point to the efficiency of nonradiative quenching processes (presence of water molecules in the coordination sphere of the lanthanide(III) ions), the ligand tppz is better suited to sensitize the lanthanide(III)'s emissions of EuIII and NdIII than SmIII, TbIII, and DyIII. Finally, the magnetic data of DyIII comple×6 reveals antiferromagnetic coupling between DyIII ions.

11.
Langmuir ; 36(6): 1409-1417, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32037836

RESUMEN

A series of mononuclear lanthanide complexes [Ln(L1)(NO3)3], (Ln = Dy(III), 1; Tb(III), 3; and Eu(III), 4; L1 = (N1E,N2E)-N1,N2-bis((1-methyl-1H-benzo[d]imidazol-2-yl)methylene)cyclohexane-1,2-diamine) is obtained by reacting N-methylbenzimidazole-2-carbaldehyde (L2) and 1,2-cyclohexanediamine (L3) with Ln(NO3)3·6H2O under solvothermal conditions. L1 ligand is produced via an in situ Schiff base reaction of two molecules of L2 and one molecule of L3. The metal center Ln(III) is in a N4O6 environment formed by L1 and NO3-. NaSCN is added on the basis of 1 synthesis. One SCN- replaces one of the three coordinated NO3- anions in the 1 structure, and the complex [Dy(L1)(NO3)2(SCN)]·CH3CN (2) is synthesized. The complex 1 shows excellent luminescence response to petroleum ether (PET), an organic solvent. To the best of our knowledge, this study is the first to use a complex for sensing responses to PET. When the metal center is changed, the obtained mononuclear complexes 3 and 4 show an excellent luminescence response to tetrahydrofuran (THF). Lastly, 2 obtained by changing the coordinating anion shows an excellent luminescence response to dichloromethane. Herein, for the first time, we regulate the metal center and coordinating anion of lanthanide complexes to adjust the recognition and response of these complexes to different organic solvents.

12.
Inorg Chem ; 59(18): 13774-13783, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32862645

RESUMEN

The design and synthesis of simple lanthanide complexes with multiple functions have been widely studied and have faced certain challenges. Herein, we successfully synthesized the series of binuclear lanthanide complexes [Ln2(L1)2(NO3)4] (HL1 = 2-amino-1,2-bis(pyridin-2-yl)ethanol; Ln = Dy (Dy2), Tb (Tb2), Ho (Ho2) Er (Er2)) via the in situ self-condensation of Ln(NO3)3·6H2O-catalyzed 2-aminomethylpyridine (16 steps) under solvothermal conditions. Dy2 was mixed with different volatile organic solvents, and photoluminescence tests demonstrated that it showed an excellent selective photoresponse to chloroform (CHCl3). Sensing Tb2 on different organic solvents under the same conditions showed that it exhibited excellent selective photoresponse to methanol (CH3OH). Even under EtOH conditions, Tb2 could selectively respond to small amounts of CH3OH. To the best of our knowledge, achieving a selective photoresponse to various volatile organic compounds by changing the metal center of the complex is difficult. Furthermore, we performed anticounterfeiting tests on Tb2, and the results showed significant differences between the anticounterfeiting marks under white light and ultraviolet light conditions. The alternating current susceptibilities of Dy2 suggested that it was a typical single-molecule magnet (SMM) (Ueff = 93.62 K, τ0 = 1.19 × 10-5 s) under a 0 Oe dc field. Ab initio calculations on Dy2 indicated that the high degrees of axiality of the constituent mononuclear Dy fragments are the main reasons for the existence of SMM behavior.

13.
Inorg Chem ; 59(16): 11640-11650, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799502

RESUMEN

The generation of two types of complexes with different topological connections and completely different structural types merely via the substitution effect is extremely rare, especially for -CH3 and -C2H5 substituents with similar physical and chemical properties. Herein, we used 3-methoxysalicylaldehyde, 1,2-cyclohexanediamine, and Dy(NO3)3·6H2O to react under solvothermal conditions (CH3OH:CH3CN = 1:1) at 80 °C to obtain the butterfly-shaped tetranuclear DyIII cluster [Dy4(L1)4(µ3-O)2(NO3)2] (Dy4, H2L1 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)). The ligand H2L1 was obtained by the Schiff base in situ reaction of 3-methoxysalicylaldehyde and 1,2-cyclohexanediamine. In the Dy4 structure, (L1)2- has two different coordination modes: µ2-η1:η2:η1:η1 and µ4-η1:η2:η1:η1:η2:η1. The four DyIII ions are in two coordination environments: N2O6 (Dy1) and O9 (Dy2). The magnetic testing of cluster Dy4 without the addition of an external field revealed that it exhibited a clear frequency-dependent behavior. We changed 3-methoxysalicylaldehyde to 3-ethoxysalicylaldehyde and obtained one case of a hydrogen-bonded helix framework, [DyL2(NO3)3]n·2CH3CN (Dy-HHFs, H2L2 = 6,6'-((1E,1'E)-(cyclohexane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(2-ethoxyphenol)), under the same reaction conditions. The ligand H2L2 was formed by the Schiff base in situ reaction of 3-ethoxysalicylaldehyde and 1,2-cyclohexanediamine. All DyIII ions in the Dy-HHFs structure are in the same coordination environment (O9). The twisted S-shaped (L2)2- ligand is linked by a Dy(III) ion to form a spiral chain. The spiral chain is one of the independent units that is interconnected to form Dy-HHFs through three strong hydrogen-bonding interactions. Magnetic studies show that Dy-HHFs exhibits single-ion-magnet behavior (Ueff = 68.59 K and τ0 = 1.10 × 10-7 s, 0 Oe DC field; Ueff = 131.5 K and τ0 = 1.22 × 10-7 s, 800 Oe DC field). Ab initio calculations were performed to interpret the dynamic magnetic performance of Dy-HHFs, and a satisfactory consistency between theory and experiment exists.

14.
Inorg Chem ; 59(20): 14861-14865, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33026801

RESUMEN

Herein we report a variety of supramolecular architectures that are self-assembled by the highly charged anionic Ti4L6 (L = embonate) cages and noble-metal Ag+ ions in the presence of the different ligands, including six Ti4L6-Ag(PPh3) cages in whose structures the Ti4L6 cage catches various in situ formed [Ag(PPh3)]+ moieties by a coordination bond and one cocrystal superstructure of a Ti4L6 cage with an in situ generated [Ag2(Ph2P(CH2)5PPh2)3]2+ cage via supramolecular interactions. In addition, the third-order nonlinear-optical properties of these compounds are investigated in detail.

15.
Inorg Chem ; 59(23): 16924-16935, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33170004

RESUMEN

By utilizing the 2-hydroxyisophthalic acid (H3ipO) ligand, 2D metal-organic frameworks (MOFs) featuring rare Ophenol-bridged [Ln2]-magnetic building blocks (MBBs), [Ln2(ipO)2(DMF)(H2O)] [Ln = Gd (1), Dy (2); DMF = N,N-dimethylformamide], were rationally designed and synthesized. When the reaction solvents that behave as terminal ligands were changed, the coordination geometries of LnIII ions and the arrangement fashion of [Ln2]-MBBs for these MOFs were modified accordingly. Another type of 2D MOF of [Ln2(ipO)2(H2O)4]·2H2O [Ln = Gd (3), Dy (4)] was thus obtained. MOFs 1 and 3 exhibited favorable magnetocaloric effect, whose maximum -ΔSm values reach 30.0 and 31.7 J kg-1 K-1, respectively. None of the single-molecule-magnet (SMM) behavior was observed in 2. However, from 2 to 4, the change of the terminal coordinated solvents brought obvious improvement of the magnetic properties. MOF 4 showed interesting relaxation behavior, in which dual relaxation was only visible under weak direct-current fields, and its highest effective energy barrier (Ueff) reached up to 243 K. Ab initio calculations revealed the tuning mechanism of the terminal coordinated solvents. Their change optimized the arrangements of the magnetic axis of the DyIII centers in both each MBB and the whole framework, thus improving the magnetic anisotropy and magnetic interactions of the system. Significantly, within the [Dy2]-MBBs of 4, the angle made by the individual magnetic axis and Dy···Dy' line is nearly 0°. This case favoring a high SMM performance not only was scarcely achieved in discrete {Ln2}-SMMs with numerous members but also has never been observed in any MBB-based MOFs as far as we know.

16.
Chemistry ; 25(46): 10813-10817, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31287598

RESUMEN

Metal nanoclusters have a certain rigidity due to their specific coordination patterns and shapes; thus, they face extreme difficulty in folding into a specific direction to form a double-helix structure and in further interconnecting to form metal-helix frameworks (MHFs). To date, no MHFs have been produced by the formation of heterometallic clusters. Selecting the appropriate "bonding molecules" to bond metal nanoclusters in a specific multiple direction is one of the most effective strategies for designing synthetic MHFs. In this study, we realized for the first time the control of different orientations of µ3 -NO3 - to join heterometallic clusters (Cu10 Dy2 ) and subsequently form a left-handed double helix chain, which further joins to form MHFs. In the structure of the MHFs, four different directions of bridging µ3 -NO3 - exist, three of which are involved in the linkage of the double-helix chain. Each µ3 -NO3 - is connected to three adjacent Cu10 Dy2 . Herein, we extend a new method for designing synthetic double-helix structures and MHFs, thereby further laying the foundation for the development of similar DNA double-helix structures and nucleic acid secondary structures in vitro.

17.
Inorg Chem ; 58(19): 12521-12525, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31483666

RESUMEN

Herein we report a novel strategy capable of generating a new class of metal-organic zeolite (MOZ) materials. When the MoO4 or WO4 tetrahedra are employed to assemble with triorganotin R3Sn fragments, four 3D networks with the zeolite BCT topology and nonzeotype 4-connected topological net (such as lon and dia) have been generated. The photocurrent study results show that these materials have good photoelectric response and high photophysical stability.

18.
Inorg Chem ; 58(14): 9169-9174, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31241324

RESUMEN

High-nuclear lanthanide clusters are generally formed by the rapid accumulation of simple building units. Thus, tracking and observing the stepwise assembly process, which is vital for understanding the assembly mechanism, are extremely difficult. Herein, the decanuclear nanocluster [Dy10(L1)6(µ5-NO3)2(OAc)10(HOAc)2]·8H2O (Dy10, H3L1 = (E)-3-((3-ethoxy-2-hydroxybenzylidene)amino)propane-1,2-diol) was obtained from the reaction of Dy(NO3)3·6H2O, Dy(OAc)3·6H2O, 3-ethoxy-2-hydroxybenzaldehyde (L2), and 3-amino-1,2-propanediol (L3). The reaction process was further tracked by time-dependent high-resolution electrospray ionization mass spectrometry, and seven reaction intermediate fragments were screened. A stepwise assembly mechanism was observed based on these fragments, that is, L → Dy1 → Dy2 → Dy3 → Dy4 → Dy5 → Dy6 → Dy10. This study is the first to discover a stepwise assembly mechanism during the formation of high-nuclear lanthanide clusters (cluster nucleus > 3). Magnetic studies have shown the multiple relaxation behavior of Dy10.

19.
Inorg Chem ; 57(15): 9020-9027, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30004680

RESUMEN

A novel multifunctional, three-dimensional (3D) lanthanide carbonate cluster based metal-organic framework (MOF) with the general formula {[Gd2(CO3)(ox)2(H2O)2]·3H2O} n (1) has been synthesized via self-assembly of gadolinium (Gd) carbonate and oxalate under hydrothermal conditions. Single-crystal X-ray diffraction reveals that the compound 1 consists of the Gd carbonate cluster with oxalic acid ligands, which form a 3D framework structure with an ordered one-dimensional (1D) pore channel along the a-axis. The coordination water molecules of Gd3+ ions point to the interior of the pore and form a 1D hydrogen bond pathway with oxygen atoms in adjacent oxalic acid that is stable at high temperature (up to 150 °C). The compound 1 features multiple hydrogen-bonding walls and good thermal stabilities, and shows the highest proton conductivity of 1.98 × 10-3 S cm-1 at T = 150 °C and in room air without additional humidity. Magnetic investigations of compound 1 demonstrate that weak antiferromagnetic couplings between adjacent Gd3+ ions bring about large cryogenic magnetocaloric effects. Remarkably, the maximum entropy change (-Δ Sm) of compound 1 reaches 58.5 J kg-1 K-1 at 2 K for a moderate field change (Δ H = 7 T). Moreover, the isomorphous MOFs: {[Ln2(CO3)(ox)2(H2O)2]·3H2O} n (Ln3+ = Ce3+(2), Pr3+(3), Nd3+(4), Tb3+(5)) also are structurally and functionally characterized, and compounds 2-5 exhibit proton conductivity above 10-3 S cm-1 in room air and without additional humidity.

20.
Dalton Trans ; 53(8): 3675-3684, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293800

RESUMEN

Coordination-driven self-assembly processes often produce remarkable structures. In particular, self-assembly processes mediated by chiral template units have provided research ideas for analyzing the formation of chiral macromolecules in living organisms. In this study, by regulating the proportion of reaction raw materials in the "one-pot" synthesis of lanthanide complexes, we constructed chiral template units with different coordination orientations. As a result, lanthanide chiral chains connected to different structures were obtained through the self-assembly process of coordination recognition. In particular, driven by coordination, chiral template units with codirectional coordination points (called cis configuration) coordinate solely with cis template units during the self-assembly process to obtain a one-dimensional (1D) chain R-1/S-1 with an "S"-shaped distribution. Moreover, chiral template units with reversed coordination sites (called trans configuration) and twisted chiral template units are connected solely to templates with the same configuration to form a 1D chain R-2/S-2 with an axial helix. A circular dichroism spectrum shows that R-1/S-1 and R-2/S-2 are two pairs of enantiomers. The controllable construction of these two differential 1D chains is of great significance for studying coordination recognition at the molecular level. To the best of our knowledge, this is the first study to construct a 1D lanthanide chain through the self-assembly process of coordination recognition. The assembly process of nucleotides to form a hierarchical structure is simulated. This work provides a vivid example of the controllable synthesis of lanthanide complexes with precise structures and offers a new perspective on the formation process of chiral macromolecules that simulates natural processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA