Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancer Immunol Immunother ; 73(5): 92, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564022

RESUMEN

Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.


Asunto(s)
Camptotecina/análogos & derivados , Neoplasias Colorrectales , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Neoplasias Colorrectales/terapia , Citosol , Microambiente Tumoral
2.
Small ; : e2403261, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031855

RESUMEN

Electrocatalytic hydrogen peroxide (H2O2) production via two-electron oxygen reduction reaction (2e--ORR) features energy-saving and eco-friendly characteristics, making it a promising alternative to the anthraquinone oxidation process. However, the common existence of numerous 2e--ORR-inactive sites/species on electrocatalysts tends to catalyze side reactions, especially under low potentials, which compromises energy efficiency and limits H2O2 yield. Addressing this, a high surface density of mono-species pyrrolic nitrogen configurations is formed over a polypyrrole@carbon nanotube composite. Thermodynamic and kinetic calculation and experimental investigation collaboratively confirm that these densely distributed and highly selective active sites effectively promote high-rate 2e--ORR electrocatalysis and inhibit side reactions over a wide potential range. Consequently, an ultra-high and stable H2O2 yield of up to 67.9/51.2 mol g-1 h-1 has been achieved on this material at a current density of 200/120 mA cm-1, corresponding Faradaic efficiency of 72.8/91.5%. A maximum H2O2 concentration of 13.47 g L-1 can be accumulated at a current density of 80 mA cm-1 with satisfactory stability. The strategy of surface active site densification thus provides a promising and universal avenue toward designing highly active and efficient electrocatalysts for 2e--ORR as well as a series of other similar electrochemical processes.

3.
Small ; : e2402055, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805743

RESUMEN

Zn ion batteries (ZIBs) are a promising candidate in safe and low-cost large-scale energy storage applications. However, significantly deteriorated cycling stability of Zn anode in high depth of charge or after long-term quiescence impedes the practical application of ZIBs. Aiming at the above issue, a spontaneous solid electrolyte interphase (SEI) formation of Zn4(OH)6SO4·xH2O (ZHS) on Zn powder is achieved in pure ZnSO4 electrolyte by facile and rational interface design. The stable and ultrathin ZHS SEI plays a crucial part in insulating water molecules and conducting Zn2+ ions, intrinsically suppressing the severe hydrogen evolution and dendrite formation on the Zn powder anode. The ZHS-Zn anode delivers a stable cycling at a high DOD of 50% for over 500 h, as well as a lifespan of over 200 h after 40-days of resting at a DOD of 25%. Benefiting from the high utilization of Zn anode, the energy density of the Zn-MnxV2O5 full cell is up to 118 Wh Kg-1. This facile method can fabricate the ZHS-Zn anode as long as 1 m, revealing its feasibility in large-scale production and commercialization.

4.
BMC Microbiol ; 24(1): 287, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095728

RESUMEN

This study used berberine hydrochloride to treat the Asian paddle crab, Charybdis japonica infected with the Gram-negative bacterium Aeromonas hydrophila at concentrations of 0, 100, 200 and 300 mg/L. The effect of berberine hydrochloride on the survival rate and gut microbiota of C. japonica was investigated. Berberine hydrochloride improved the stability of the intestinal flora, with an increase in the abundance of probiotic species and a decrease in the abundance of both pathogenic bacteria after treatment with high concentrations of berberine hydrochloride. Berberine hydrochloride altered peroxidase activity (POD), malondialdehyde (MDA), and lipid peroxidation (LPO) in the intestinal tract compared to the control. Berberine hydrochloride could modulate the energy released from the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) in the intestinal tract of C. japonica infected with A. hydrophila. Zona occludens 1 (ZO-1), Zinc finger E-box binding homeobox 1 (ZEB1), occludin and signal transducer, and activator of transcription5b (STAT5b) expression were also increased, which improved intestinal barrier function. The results of this study provide new insights into the role of berberine hydrochloride in intestinal immune mechanisms and oxidative stress in crustaceans.


Asunto(s)
Aeromonas hydrophila , Antioxidantes , Berberina , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Berberina/farmacología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/genética , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Braquiuros/microbiología , Braquiuros/efectos de los fármacos , Malondialdehído/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo
5.
J Med Virol ; 96(3): e29543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528839

RESUMEN

Amidst the COVID-19 pandemic, uncertainty persists among caregivers regarding the vaccination of pediatric liver transplant recipients (PLTRs). This study evaluates the immunogenicity and safety of COVID-19 vaccination in this vulnerable population. A cohort of 30 PLTRs underwent sequential vaccinations with an inactivated SARS-CoV-2 vaccine followed by an Ad5-nCoV booster. We collected and analyzed blood samples pre-vaccination and four weeks post-vaccination to quantify antibody and IGRA (IFN-γ Release Assay) levels. We also documented any adverse reactions occurring within seven days post-vaccination and monitored participants for infections over six months post-vaccination, culminating in a comprehensive statistical analysis. The Ad5-nCoV booster substantially elevated IgG (T1: 18.01, 20%; T2: 66.61, 55%) and nAb (T1: 119.29, 8%; T2: 3799.75, 80%) levels, as well as T-cell responses, in comparison to the initial dose. The first dose was associated with some common adverse reactions, such as injection site pain (13.3%) and fever (16.6%), but a low rate of systemic reactions (16.0%). There was no significant difference in Omicron infection rates or RTPCR conversion times between vaccinated and unvaccinated groups. Notably, following Omicron infection, vaccinated individuals exhibited significantly higher SARS-CoV-2 IgG and nAb titers (average IgG: 231.21 vs. 62.09 S/CO, p = 0.0003; nAb: 5246.11 vs. 2592.07 IU/mL, p = 0.0002). The use of inactivated vaccines followed by an Ad5-nCoV booster in PLTRs is generally safe and elicits a robust humoral response, albeit with limited T-cell responses.


Asunto(s)
COVID-19 , Trasplante de Hígado , Humanos , Niño , Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Anticuerpos Antivirales , Inmunoglobulina G , Vacunas de Productos Inactivados/efectos adversos , Anticuerpos Neutralizantes , Vacunación
6.
Fish Shellfish Immunol ; 146: 109418, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301811

RESUMEN

The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.


Asunto(s)
Oryza , Plaguicidas , Animales , Ecosistema , Agricultura/métodos , Plaguicidas/toxicidad , Plaguicidas/análisis , Peces , Polifenoles/farmacología
7.
Neurol Sci ; 45(6): 2681-2696, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38265536

RESUMEN

BACKGROUND: Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, and its incidence is rapidly rising. The diagnosis of PD relies on clinical characteristics. Although current treatments aim to alleviate symptoms, they do not effectively halt the disease's progression. Early detection and intervention hold immense importance. This study aimed to establish a new PD diagnostic model. METHODS: Data from a public database were adopted for the construction and validation of a PD diagnostic model with random forest and artificial neural network models. The CIBERSORT platform was applied for the evaluation of immune cell infiltration in PD. Quantitative real-time PCR was performed to verify the accuracy and reliability of the bioinformatics analysis results. RESULTS: Leveraging existing gene expression data from the Gene Expression Omnibus (GEO) database, we sifted through differentially expressed genes (DEGs) in PD and identified 30 crucial genes through a random forest classifier. Furthermore, we successfully designed a novel PD diagnostic model using an artificial neural network and verified its diagnostic efficacy using publicly available datasets. Our research also suggests that mast cells may play a significant role in the onset and progression of PD. CONCLUSION: This work developed a new PD diagnostic model with machine learning techniques and suggested the immune cells as a potential target for PD therapy.


Asunto(s)
Redes Neurales de la Computación , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/diagnóstico , Humanos , Aprendizaje Automático , Transcriptoma , Biología Computacional , Perfilación de la Expresión Génica , Mastocitos/inmunología , Bosques Aleatorios
8.
Ren Fail ; 46(1): 2313176, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38482886

RESUMEN

OBJECTIVE: This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS: The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS: Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION: TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.


Asunto(s)
Lesión Renal Aguda , Enfermedades Mitocondriales , Sepsis , Sulfonamidas , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
9.
J Clin Nurs ; 33(3): 1209-1218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38284439

RESUMEN

AIMS AND OBJECTIVES: This study aims to propose a self-management clusters classification method to determine the self-management ability of elderly patients with mild cognitive impairment (MCI) associated with diabetes mellitus (DM). BACKGROUND: MCI associated with DM is a common chronic disease in old adults. Self-management affects the disease progression of patients to a large extent. However, the comorbidity and patients' self-management ability are heterogeneous. DESIGN: A cross-sectional study based on cluster analysis is designed in this paper. METHOD: The study included 235 participants. The diabetes self-management scale is used to evaluate the self-management ability of patients. SPSS 21.0 was used to analyse the data, including descriptive statistics, agglomerative hierarchical clustering with Ward's method before k-means clustering, k-means clustering analysis, analysis of variance and chi-square test. RESULTS: Three clusters of self-management styles were classified as follows: Disease neglect type, life oriented type and medical dependence type. Among all participants, the percentages of the three clusters above are 9.78%, 32.77% and 57.45%, respectively. The difference between the six dimensions of each cluster is statistically significant. CONCLUSION(S): This study classified three groups of self-management styles, and each group has its own self-management characteristics. The characteristics of the three clusters may help to provide personalized self-management strategies and delay the disease progression of MCI associated with DM patients. RELEVANCE TO CLINICAL PRACTICE: Typological methods can be used to discover the characteristics of patient clusters and provide personalized care to improve the efficiency of patient self-management to delay the progress of the disease. PATIENT OR PUBLIC CONTRIBUTION: In our study, we invited patients and members of the public to participate in the research survey and conducted data collection.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Automanejo , Adulto , Humanos , Anciano , Estudios Transversales , Diabetes Mellitus/terapia , Disfunción Cognitiva/complicaciones , Progresión de la Enfermedad
10.
Fish Physiol Biochem ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066864

RESUMEN

As a major source of energy, carbohydrates have a protein-saving effect. However, excessive consumption of carbohydrates can lead to the disruption of the intestinal barrier in fish, especially for carnivorous fish. Therefore, traditional Chinese medicine component Yinchenhao Decoction (YD), was used to detect the effect on intestinal barriers and microbial community equilibrium for largemouth bass in current research. In this research, a series of NC (normal carbohydrate diet) and HC (high carbohydrate diet) with graded YD treatments during 10 weeks feeding trial. Results suggested that 2% and 4% YD treatments significantly reduced gut inflammation and mucosal loss caused by HC. Compared with NC, HC significantly decreased the relative expression of intestinal tight junction-related genes (zo1, claudin1, claudin7, and occludin). However, with the application of YD, the expression of tight junction-related genes (zo1, claudin1, and claudin7) increased significantly (p < 0.05). Likewise, administration of YD significantly reduced elevated plasma diamine oxidase (DAO) activity caused by HC (p < 0.05). Additionally, YD significantly downregulated the mRNA expression of endoplasmic reticulum stress (ERS)-related genes (grp78, atf6, chopα, ire1, xbp1, and eifα) and pro-apoptosis genes (casp3, casp8, and bax) (p < 0.05), while upregulating the anti-apoptosis gene bcl2 (p < 0.05). Moreover, YD significantly increased the mRNA expression of antioxidant genes and the enzyme activities of CAT and GPX, while decreased MDA concentration significantly (p < 0.05). Whereas, YD markedly decreased the expression of pro-inflammatory genes (il1ß, tnfα, il8, and nf-κB) and the immune enzymes activity (ACP and AKP) (p < 0.05) by up-regulating the expression of anti-inflammatory genes (ikb and il10). Notably, YD modulated the largemouth bass intestinal microbial community, enhanced the diversity and increased the abundance of probiotic microorganisms in the intestinal microbiota. In summary, YD supplementation in HC alleviated inflammation, apoptosis, oxidative stress, tight-junction injury, and microbiota disequilibrium in the intestine, which suggested that YD could be a valuable functional additive in aquaculture.

11.
Angew Chem Int Ed Engl ; : e202408500, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115946

RESUMEN

Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of Co-N4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90%/85% H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.

12.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 499-505, 2024 May 15.
Artículo en Zh | MEDLINE | ID: mdl-38802911

RESUMEN

OBJECTIVES: To summarize the clinical data of 7 children with activated phosphoinositide 3-kinase delta syndrome (APDS) and enhance understanding of the disease. METHODS: A retrospective analysis was conducted on clinical data of 7 APDS children admitted to Hunan Provincial People's Hospital from January 2019 to August 2023. RESULTS: Among the 7 children (4 males, 3 females), the median age of onset was 30 months, and the median age at diagnosis was 101 months. Recurrent respiratory tract infections, hepatosplenomegaly, and multiple lymphadenopathy were observed in all 7 cases. Sepsis was observed in 5 cases, otitis media and multiple caries were observed in 3 cases, and diarrhea and joint pain were observed in 2 cases. Lymphoma and systemic lupus erythematosus were observed in 1 case each. Fiberoptic bronchoscopy was performed in 4 cases, revealing scattered nodular protrusions in the bronchial lumen. The most common respiratory pathogen was Streptococcus pneumoniae (4 cases). Six patients had a p.E1021K missense mutation, and one had a p.434-475del splice site mutation. CONCLUSIONS: p.E1021K is the most common mutation site in APDS children. Children who present with one or more of the following symptoms: recurrent respiratory tract infections, hepatosplenomegaly, multiple lymphadenopathy, otitis media, and caries, and exhibit scattered nodular protrusions on fiberoptic bronchoscopy, should be vigilant for APDS. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(5): 499-505.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Humanos , Femenino , Masculino , Preescolar , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios Retrospectivos , Infecciones del Sistema Respiratorio , Mutación , Enfermedades de Inmunodeficiencia Primaria/genética , Lactante
13.
Mol Neurobiol ; 61(9): 6893-6908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38358439

RESUMEN

Ischemic stroke remains one of the major causes of serious disability and death globally. LncRNA maternally expressed gene 3 (MEG3) is elevated in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes cells. The objective of this study is to investigate the mechanism underlying MEG3-regulated cerebral ischemia/reperfusion (I/R) injury. MCAO/R mouse model and OGD/R-treated HT-22 cell model were established. The cerebral I/R injury was monitored by TTC staining, neurological scoring, H&E and TUNEL assay. The levels of MEG3, hnRNPA1, Sirt2 and other key molecules were detected by qRT-PCR and western blot. Mitochondrial dysfunction was assessed by transmission Electron Microscopy (TEM), JC-1 and MitoTracker staining. Oxidative stress was monitored using commercial kits. Bioinformatics analysis, RIP, RNA pull-down assays and RNA FISH were employed to detect the interactions among MEG3, hnRNPA1 and Sirt2. The m6A modification of MEG3 was assessed by MeRIP-qPCR. MEG3 promoted MCAO/R-induced brain injury by modulating mitochondrial fragmentation and oxidative stress. It also facilitated OGD/R-induced apoptosis, mitochondrial dysfunction and oxidative stress in HT-22 cells. Mechanistically, direct associations between MEG3 and hnRNPA1, as well as between hnRNPA1 and Sirt2, were observed in HT-22 cells. MEG3 regulated Sirt2 expression in a hnRNPA1-dependent manner. Functional studies showed that MEG3/Sirt2 axis contributed to OGD/R-induced mitochondrial dysfunction and oxidative stress in HT-22 cells. Additionally, METTL3 was identified as the m6A transferase responsible for the m6A modification of MEG3. m6A-induced lncRNA MEG3 promoted cerebral I/R injury via modulating oxidative stress and mitochondrial dysfunction by hnRNPA1/Sirt2 axis.


Asunto(s)
Ribonucleoproteína Nuclear Heterogénea A1 , Mitocondrias , Estrés Oxidativo , ARN Largo no Codificante , Daño por Reperfusión , Sirtuina 2 , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Estrés Oxidativo/fisiología , Estrés Oxidativo/genética , Mitocondrias/metabolismo , Masculino , Ratones , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Sirtuina 2/metabolismo , Sirtuina 2/genética , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/genética , Línea Celular , Apoptosis/genética , Transducción de Señal/fisiología , Adenosina/análogos & derivados
14.
Adv Mater ; : e2406403, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39036826

RESUMEN

Designing non-noble metal single-atom catalysts (M-SACs) for two-electron oxygen reduction reaction (2e-ORR) is attractive for the hydrogen peroxide (H2O2) electrosynthesis, in which the coordination configuration of the M-SACs essentially affects the reaction activity and product selectivity. Though extensively investigated, a generalized coordination engineering strategy has not yet been proposed, which fundamentally hinders the rational design of M-SACs with optimized catalytic capabilities. Herein, a generalized coordination engineering strategy is proposed for M-SACs toward H2O2 electrosynthesis via introducing heteroatoms (e.g., oxygen or sulfur atoms) with higher or lower electronegativity than nitrogen atoms into the first sphere of metal-N4 system to tailor their electronic structure and adjust the adsorption strength for *OOH intermediates, respectively, thus optimizing their electrocatalytic capability for 2e-ORR. Specifically, the (O, N)-coordinated Co SAC (Co-N3O) and (S, N)-coordinated Ni SAC (Ni-N3S) are precisely synthesized, and both present superior 2e-ORR activity (Eonset: ≈0.80 V versus RHE) and selectivity (≈90%) in alkaline conditions compared with conventional Co-N4 and Ni-N4 sites. The high H2O2 yield rates of 14.2 and 17.5 moL g-1 h-1 and long-term stability over 12 h are respectively achieved for Co-N3O and Ni-N3S. Such favorable 2e-ORR pathway of the catalysts is also theoretically confirmed by the kinetics simulations.

15.
Medicine (Baltimore) ; 103(8): e37024, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394488

RESUMEN

BACKGROUND: Cancer pain is one of the most intolerable and frightening symptoms of cancer patients. However, the clinical effect of the three-step analgesic ladder method (TSAL) is not satisfactory. The combination of external treatment of traditional Chinese medicine (TCM) can improve the clinical effect. OBJECTIVE: This study used network meta-analysis to compare the effects of different external treatment methods of TCM combined with TSAL on cancer pain. METHODS: Databases searched by our team included Google Scholar, Web of Science, Scopus, Embase, PubMed, and Cochrane Library. Randomized controlled trials related to the external treatment of TCM combined with TSAL for cancer pain were screened from the establishment of the database till now. The above literature extracted clinical efficacy, NRS score, KPS score, analgesic onset time, and duration as the main results after the screening. The 95% confidence interval (95% CI) of OR value and SMD value was used as the effect index to compare the difference in efficacy of different interventions, and the ranking was conducted. STATA 17.0 software was used for the statistical analysis of the above data. RESULTS: A total of 78 studies were included, including 8 interventions and 5742 participants. Based on ranking probability, the clinical effective rate of manual acupuncture combined with TSAL was the best when the intervention time was set at 4 weeks [OR = 5.42, 95% CI (1.99,14.81)], and the improvement effect on KPS score was also the best [SMD = 0.97, 95% CI (0.61, 1.33)]. Acupoint external application was the best intervention in reducing NRS score [SMD = -1.14, 95% CI (-1.90, -0.93)]. Acupoint moxibustion combined with TSAL was considered to be the most effective intervention to prolong the duration of analgesia [SMD = 1.69, 95% CI (0.84, 2.54)] and shortening the onset time of analgesia [SMD = -3.00, 95% CI (-4.54, -1.47)]. CONCLUSIONS: TSAL combined with manual acupuncture is the best in terms of clinical efficacy and improvement of patients' functional activity status. With the extension of treatment time, the intervention of this kind of treatment on the clinical effect is more pronounced. Acupoint external application also has a unique advantage in reducing the pain level of patients. From the point of view of analgesic duration and duration of analgesia, combined acupoint moxibustion has the best effect.


Asunto(s)
Dolor en Cáncer , Medicina Tradicional China , Metaanálisis en Red , Humanos , Medicina Tradicional China/métodos , Dolor en Cáncer/terapia , Dolor en Cáncer/tratamiento farmacológico , Terapia por Acupuntura/métodos , Manejo del Dolor/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Terapia Combinada , Dimensión del Dolor , Analgésicos/uso terapéutico
16.
Can Respir J ; 2024: 8889536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476120

RESUMEN

Background: The effectiveness of definitive radiotherapy (RT) for patients with clinical stage IIIB or IIIC lung adenocarcinoma and epidermal growth factor receptor (EGFR) mutations who received first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) is unclear. Methods: Taiwan Cancer Registry data were used in this retrospective cohort study to identify adult patients diagnosed with EGFR-mutated stage IIIB or IIIC lung adenocarcinoma between 2011 and 2020. Patients treated with first- or second-generation EGFR TKIs were classified into RT and non-RT groups. Propensity score (PS) weighting was applied to balance covariates between groups. The primary outcome was overall survival (OS), and the incidence of lung cancer mortality (ILCM) was considered as a supplementary outcome. Additional supplementary analyses were conducted to assess the robustness of the findings. Results: Among 270 eligible patients, 41 received RT and 229 did not. After a median follow-up of 46 months, PS-weighted analysis showed the PS-weighted hazard ratio of death for the RT group compared to the non-RT group was 0.94 (95% CI: 0.61-1.45, p = 0.78). ILCM rates did not differ significantly between the two groups. Supplementary analyses yielded consistent results. Conclusion: The addition of definitive RT to first- or second-generation EGFR TKI treatment does not significantly improve OS of patients with EGFR-mutated stage IIIB or IIIC lung adenocarcinoma. NCT03521154NCT05167851.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adulto , Humanos , Estudios Retrospectivos , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Mutación
17.
Sci Total Environ ; 946: 174267, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936730

RESUMEN

Nano-plastics (NPs) have emerged as prevalent contaminants in aquatic ecosystems, gaining significant research interest. Nonetheless, limited research has addressed the toxicity mechanisms associated with PS-NPs (polystyrene nanoplastics) of varying particle sizes. In this investigation, genotoxicity, growth patterns, hepatopancreatic damage, and intestinal flora alterations in freshwater shrimp Neocaridina palmata (Shen 1948), subjected to 35 days PS-NPs exposure (two size PS-NPs: 75 nm and 200 nm were used for this experiment, and five concentrations were set: 0 mg/L, 0.5 mg/L, 2.5 mg/L, 5 mg/L, and 10 mg/L concentrations PS-NP concentrations were examined using RNA sequencing, histopathological analyses, enzyme activity assessments, and 16S rRNA sequencing. Noteworthy variations in differentially expressed genes (DEGs) were identified across groups exposed to different PS-NPs sizes. We observed that PS-NPs predominantly instigated cellular component-related processes and induced apoptosis and oxidative stress across tissues via the mitochondrial pathway. Although the 200 nm-PS-NPs are stronger than the 75 nm-PS-NPs in terms of fluorescence intensity, 75 nm-PS-NPs are more likely to promote apoptosis than 200 nm-PS-NPs. PS-NPs impeded standard energy provision in N. palmata, potentially contributing to decreased body length and weight. Moreover, PS-NPs inflicted damage on intestinal epithelial and hepatopancreatic tissues and significantly modified intestinal microbial community structures. Specifically, PS-NPs-induced intestinal damage was marked by a decline in some probiotics (notably Lactobacilli) and a surge in pathogenic bacteria. Moreover, supplementing N. palmata with Lactobacilli appeared ameliorate oxidative stress and strengthen energy metabolism. Our findings provided valuable insights into crustacean toxicity mechanisms when subjected to PS-NPs and the potential risks that different PS-NPs sizes posed to terrestrial ecosystems.


Asunto(s)
Hepatopáncreas , Tamaño de la Partícula , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Hepatopáncreas/efectos de los fármacos , Intestinos/efectos de los fármacos , Nanopartículas/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Crustáceos/efectos de los fármacos , Multiómica
18.
Sci Total Environ ; 942: 173770, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38851343

RESUMEN

The widespread presence of microplastics and nanoplastics (MPs/NPs) in the environment has become a critical public health issue due to their potential to infiltrate and affect various biological systems. Our review is crucial as it consolidates current data and provides a comprehensive analysis of the cardiovascular impacts of MPs/NPs across species, highlighting significant implications for human health. By synthesizing findings from studies on aquatic and terrestrial organisms, including humans, this review offers insights into the ubiquity of MPs/NPs and their pathophysiological roles in cardiovascular systems. We demonstrated that exposure to MPs/NPs is linked to various cardiovascular ailments such as thrombogenesis, vascular damage, and cardiac impairments in model organisms, which likely extrapolate to humans. Our review critically evaluated methods for detecting MPs/NPs in biological tissues, assessing their toxicity, and understanding their behaviour within the vasculature. These findings emphasise the urgent need for targeted public health strategies and enhanced regulatory measures to mitigate the impacts of MP/NP pollution. Furthermore, the review underlined the necessity of advancing research methodologies to explore long-term effects and potential intergenerational consequences of MP/NP exposure. By mapping out the intricate links between environmental exposure and cardiovascular risks, our work served as a pivotal reference for future research and policymaking aimed at curbing the burgeoning threat of plastic pollution.


Asunto(s)
Sistema Cardiovascular , Microplásticos , Sistema Cardiovascular/efectos de los fármacos , Microplásticos/toxicidad , Microplásticos/análisis , Humanos , Plásticos/toxicidad , Animales , Exposición a Riesgos Ambientales , Nanopartículas/toxicidad , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Enfermedades Cardiovasculares
19.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998240

RESUMEN

Sodium citrate (SC) is sensitive to violet light illumination (VLI) and acts as a weak reductant. Conversely, gold (III) chloride trihydrate (GC) often acts as an oxidant in a redox reaction. In this study, the influences of colored light on the production of gold nanoparticles (AuNPs) in a mixture of gold (III) ions and citrate via VLI and the antibacterial photodynamic inactivation (aPDI) of Escherichia coli (E. coli) are determined under alkaline conditions. The diameter of AuNPs is within the range of 3-15 nm, i.e., their mean diameter is 9 nm; when citrate is mixed with gold (III) ions under VLI, AuNPs are formed via an electron transfer process. Additionally, GC mixed with SC (GCSC) inhibits E. coli more effectively under VLI than it does under blue, green, or red light. GCSC and SC are shown to inhibit E. coli populations by 4.67 and 1.12 logs, respectively, via VLI at 10 W/m2 for 60 min under alkaline conditions. GCSC-treated E. coli has a more significant photolytic effect on anionic superoxide radical (O2•-) formation under VLI, as more O2•- is formed within E. coli if the GCSC-treated samples are subjected to VLI. The O2•- exhibits a greater effect in a solution of GCSC than that shown by SC alone under VLI treatment. Gold (III) ions in a GCSC system appear to act as an oxidant by facilitating the electron transfer from citrate under VLI and the formation of AuNPs and O2•- via GCSC photolysis under alkaline conditions. As such, the photolysis of GCSC under VLI is a useful process that can be applied to aPDI.

20.
World J Clin Oncol ; 15(1): 1-4, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292660

RESUMEN

The efficacy of pelvic radiation in the management of locally advanced stage rectal cancer has come under scrutiny in the context of modern precision medicine and systemic therapy as evidenced by recent clinical trials such as FOWARC (J Clin Oncol 2019; 37: 3223-3233), NCT04165772 (N Engl J Med 2022; 386: 2363-2376), and PROSPECT (N Engl J Med 2023; 389: 322-334). In this review, we comprehensively assess these pivotal trials and offer additional insights into the evolving role of pelvic radiation in contemporary oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA