Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Fish Shellfish Immunol ; 151: 109744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960107

RESUMEN

MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.


Asunto(s)
Carpas , Proteínas de Peces , Gosipol , MicroARNs , Factor 88 de Diferenciación Mieloide , Transducción de Señal , Animales , Carpas/inmunología , Carpas/genética , MicroARNs/genética , MicroARNs/metabolismo , Gosipol/farmacología , Gosipol/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética
2.
Fish Shellfish Immunol ; 95: 473-480, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31693945

RESUMEN

Cadmium (Cd) is a nonessential metal that is a contaminant in aquatic ecosystems. Cd can accumulate in aquatic animals, leading to detrimental effects in tissues, and Cd exposure can induce immunotoxicity in fish. MicroRNAs (miRNAs) play critical roles in immune responses, yet the participation of miRNAs in Cd-induced immunotoxicity remains poorly understood. The present study evaluated the effects of Cd exposure on the immune responses and the mRNAs and miRNAs expressions of immune-related genes in Cyprinus carpio (C. carpio). Then, microRNA-155 (miR-155) was overexpressed and microRNA-181a (miR-181a) was knocked down to determine which miRNA plays a key role in the immune response to Cd. The results showed that 0.5 mg/L Cd2+ significantly decreased the activity of alkaline phosphatase (AKP) and acid phosphatase (ACP) in the kidneys of C. carpio. Cd exposure upregulated the mRNA expressions of interleukin (IL)-1ß, IL-8, nuclear factor-kappa B (NF-κB), tumour necrosis factor-α (TNF-α), and Toll-like receptor 4(TLR-4) and downregulated those of IL-10 and heme oxygenase-1 (HO-1) in C. carpio kidneys. Cd exposure also led to upregulation of miR-155 and miR-181a expressions. Furthermore, AKP and ACP activity in the kidneys was markedly changed after intraperitoneal injection of C. carpio with miR-155 agomir and miR-181a antagomir. All detected mRNA expressions were significantly decreased after injection of miR-155 agomir, and IL-10, NF-κB, TNF-α, and HO-1 mRNA expressions were markedly increased after injection of miR-181a antagomir. The results of this study demonstrate that Cd exposure can immunocompromise C. carpio by targeting HO-1 through miR-155 and miR-181a. This is the first study to reveal that Cd exposure induces immunotoxicity through miR-155 and miR-181a in the kidneys of C. carpio.


Asunto(s)
Cadmio/toxicidad , Carpas/genética , Carpas/inmunología , Hemo-Oxigenasa 1/genética , MicroARNs/genética , Animales , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/inmunología , Interleucinas/genética , Interleucinas/inmunología , Riñón/efectos de los fármacos , Riñón/patología
3.
Aquat Toxicol ; 275: 107072, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39222568

RESUMEN

6:2 Chlorinated polyfluorinated ether sulfonate, commonly known as F-53B, is widely used as a mist suppressant in various industries and is frequently detected in the environment. Despite its prevalent presence, the adverse effects of F-53B are not well understood and require future investigation. This study utilized zebrafish embryos and adults to examine the toxic effects of F-53B. Our findings revealed that F-53B impaired gill structure and increased erythrocyte numbers in adult zebrafish. Notably, F-53B demonstrated a higher sensitivity for inducing mortality (LC50 at 96 h) in adult zebrafish compared to embryos. Additionally, F-53B disrupted the expression of critical steroidogenic genes and hindered sex hormone production, which negatively affecting egg production. In conclusion, this study underscores the detrimental impact of F-53B on gill structure and reproductive toxicity in zebrafish, providing valuable insights into its overall toxicity.


Asunto(s)
Embrión no Mamífero , Branquias , Reproducción , Contaminantes Químicos del Agua , Pez Cebra , Animales , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Femenino , Masculino , Dosificación Letal Mediana
4.
Talanta ; 259: 124529, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37084606

RESUMEN

In recent years, the dual/multi-organelle-targeted fluorescent probe based on small organic molecules has good biocompatibility and can visualize the interaction between different organelles, which has attracted much attention. In addition, these probes can also be used to detect small molecules in the organelle environment, such as active sulfur species (RSS), reactive oxygen species (ROS), pH, viscosity and so on. However, the review of dual/multi-organelle-targeted fluorescent probe for small organic molecules lacks a systematic summary, which may hinder the development of this field. In this review, we will focus on the design strategies and bioimaging applications of dual/multi-organelle-targeted fluorescent probe, and classify them into six classes according to different organelles targeted. The first class probe targeted mitochondria and lysosome. The second class probe targeted endoplasmic reticulum and lysosome. The third class probe targeted mitochondria and lipid droplets. The fourth class probe targeted endoplasmic reticulum and lipid droplets. The fifth class probe targeted lysosome and lipid droplets. The sixth class multi-targeted probe. The mechanism of these probes targeting organelles and the visualization of the interaction between different organelles are emphasized, and the prospect and future development direction of this research field are prospected. This will provide a systematic idea for the development and functional research of dual/multi-organelle-targeted fluorescent probe, and promote its research in related physiological and pathological medicine field in the future.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Colorantes Fluorescentes/química , Mitocondrias/química , Lisosomas/química , Gotas Lipídicas , Especies Reactivas de Oxígeno
5.
Aquat Toxicol ; 261: 106615, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364300

RESUMEN

Microplastics, plastic particles and fragments smaller than 5 mm are ubiquitous in various aquatic environments, but the hazards of microplastics with different particle sizes, concentrations and materials are not well understood. This study investigated the toxicity of polyethylene microplastics (PE-MPs) with different concentrations and particle sizes or polystyrene microplastics (PS-MPs) on freshwater algae Chlorella vulgaris Beij (C. vulgaris) for 11 days. Results indicated that the growth, colony formation, photosynthetic pigment contents and soluble intracellular polysaccharides were unaffected, whereas the photosynthetic efficiency and the total soluble protein (TSP) contents were remarkably decreased at 11 d with the increased concentration of PE-MP exposure. The growth, photosynthetic efficiency, soluble intracellular polysaccharides and TSP contents were unaffected after exposure to PE-MPs with different particle sizes or PS-MPs. By contrast, the colony formation and photosynthetic pigment contents were remarkably decreased after exposure to PS-MPs compared with the control or PE-MPs with the same particle size. The C. vulgaris colonization on microplastics was proven by scanning electron microscopy, indicating that the adsorption effects were the main harmful pathways of different microplastics to algal. Our results suggested that microplastics have limited harmful effects on algae, mainly in adsorption and shading.


Asunto(s)
Chlorella vulgaris , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/toxicidad , Polietileno , Nutrientes , Agua Dulce
6.
Aquat Toxicol ; 249: 106239, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35863253

RESUMEN

Due to high persistence and bioavailability, Cadmium (Cd) is one of the most prevalent environmental contaminants, posing an elevating threat to the ecosystems. It has been evidenced that high-dose Cd elicits deleterious effects on aquatic organisms, but the potential toxicities of Cd at environmentally relevant concentrations remains underappreciated. In this study, we used common carp to investigate how environmental Cd exposure affects triglyceride (TG) and cholesterol metabolism and underlying mechanisms. The data indicated that Cd resulted in the shift of TG from the liver to blood and the movement of cholesterol in the opposite direction, ultimately giving rise to the storage of crude lipid in liver and muscle, especially hepatic cholesterol retention. Cholesterol, instead of TG, became the principal cause during the progression of hepatic lipid accumulation. Mechanistic investigations at transcriptional and translational levels further substantiated that Cd blocked hepatic biosynthesis of TG and enhanced TG efflux out of the liver and fatty acid ß-oxidation, which collectively led to the compromised TG metabolism in the liver and accelerated TG export to the serum. Additionally, strengthened synthesis, retarded export and oxidation of cholesterol detailed the hepatic prominent cholesterol retention. Taken together, our results demonstrated that environmental exposure to Cd perturbed lipid metabolism through triggering distinct responses from hepatic TG and cholesterol homeostasis. These indicated that environmental factors (such as waterborne Cd) could be a potential contributor to the prevalence of non-alcoholic fatty-liver disease in aquaculture and more efforts should be devoted to the ecological risk assessment of pollutants under environmental scenarios.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Carpas/metabolismo , Ecosistema , Exposición a Riesgos Ambientales , Metabolismo de los Lípidos , Hígado , Triglicéridos/metabolismo , Contaminantes Químicos del Agua/toxicidad
7.
Materials (Basel) ; 14(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34279293

RESUMEN

Hollow sphere structures with perforations (PHSSs) in three different arrangements (simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC)) were fabricated through three-dimensional (3D) printing, and the mechanical behaviours of these PHSSs under quasi-static compression were investigated experimentally and numerically. The results indicated that under uniaxial compression, the PHSSs mainly undergo three stages, i.e., a linear elastic stage, a large deformation or plateau stage, and a densification stage. During the stage of large deformation, the SC and BCC PHSSs experience a preliminary compaction sub-stage after layer-by-layer buckling, while for the FCC PHSS, layer-by-layer collapse and compaction are the dominant deformation behaviours. A numerical simulation was employed to study the mechanical properties of PHSSs with different geometric parameters under quasi-static compression and to explore the effect of the wall thickness, hole diameter, and sphere arrangement on the first peak stress, plateau stress, and specific energy absorption (SEA) of the PHSSs. The results reveal that the geometric parameters have a significant impact on the large deformation behaviour and energy absorption capacity of PHSSs. The presented PHSS is also proven to be much lighter than traditional metallic hollow sphere structure (MHSS) and has higher specific strength and SEA.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34051377

RESUMEN

MicroRNAs (miRNAs) play a critical role in regulating the response of animals exposed to heavy metal stress. As a globally dispersed heavy metal in aquatic ecosystems, cadmium (Cd) is highly toxic to many aquatic species. However, little is known about the miRNA response to Cd stress in fish. To investigate the regulatory effect of miRNAs in response to Cd, common carp (Cyprinus carpio) were exposed to Cd2+-containing water (0.005 mg/L, 0.05 mg/L, 0.5 mg/L) for 30 days. After exposure, Cd2+ contents were significantly higher in the kidneys of C. carpio compared to other tissues, when exposed to 0.5 mg/L Cd2+. Hematoxylin and eosin staining images revealed that elevated Cd induced inflammatory damage in the kidneys of C.carpio. Further, miRNA sequencing revealed nine differentially expressed miRNAs (miR-217, miR-205 and seven novel miRNAs) in the kidneys, between 0.5 mg/L Cd2+ exposure and control groups. Potential target mRNAs of miRNAs suggest that miR-217 is involved in immunotoxicity. miR-217 agomir was intraperitoneally administered to C. carpio and RT-PCR revealed that the expression of IL-8 and SIRT1 decreased, while TLR-4, TRAF6, NF-kB, TNF-α, IL-1ß, and TGF-ß increased in the kidneys of C.carpio. Additionally, the expression of SIRT1 decreased, while the expression of other mRNAs increased in kidneys of C. carpio exposed to Cd. According to mRNAs expression in the agomir and Cd treatment, miRNAs inhibit the expressions of target mRNAs. These results demonstrate that miR-217 via SIRT1 plays a regulatory role in the immunotoxicity of Cd to C. carpio.


Asunto(s)
Cadmio/toxicidad , Carpas , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , MicroARNs/agonistas , MicroARNs/genética , Sirtuina 1/genética , Contaminantes Químicos del Agua/toxicidad
9.
Anim Reprod Sci ; 223: 106633, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33099104

RESUMEN

To evaluate functions of vitellogenin (Vg) and heat shock protein 90 (Hsp90) during ovarian and embryonic development of Exopalaemon carinicauda, the cDNA of Vg (Ec-Vg) was cloned, and the abundances of Ec-Vg and heat shock protein 90 (Hsp90) (Ec-Hsp90) were determined during ovarian and embryonic development. During ovarian development, the concentration of Vg protein in hemolymph was markedly greater than in the ovary and hepatopancreas, and was greatest at sexual maturity. The relative abundance of Ec-Vg mRNA transcript was greatest in the hepatopancreas and almost undetectable in hemocytes. By combining mRNA transcript relative abundances with morphological results, a model was developed to explain the mRNA transcript relative abundance of Ec-Hsp90 and Ec-Vg during ovarian and embryonic development. The relative abundance of Ec-Vg mRNA transcript was greatest during the recovery period after reproduction had occurred (Stage V) and mature stage (Stage IV) in the ovary or hepatopancreas, respectively. There were marked associations of the patterns of Ec-Hsp90 and Ec-Vg mRNA transcript abundances both in hepatopancreas and ovary. During embryonic development, the relative abundance of the two mRNA transcripts were greatest at the metazoea and protozoea stages, respectively. These results indicate that Ec-Vg is produced primarily in the hepatopancreas, secreted into the hemolymph and transported into growing oocytes. It, therefore, is believed that Ec-Vg has an important function in the overall ovarian development and late embryonic development of E. carinicauda. In contrast, Ec-Hsp90 is a regulatory factor for Vg transcription and is important during early organogenesis in E. carinicauda.


Asunto(s)
Decápodos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Vitelogeninas/metabolismo , Animales , Decápodos/embriología , Decápodos/genética , Femenino , Proteínas HSP90 de Choque Térmico/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Vitelogeninas/genética
10.
Environ Pollut ; 259: 113846, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31887601

RESUMEN

Trichlorfon is an organic phosphorus pesticide used to control different parasitic infections in aquaculture. The repeated, excessive use of trichlorfon can result in environmental pollution, thus affecting human health. This study aimed to determine the effects of different concentrations of trichlorfon (0, 0.1, 0.5 and 1.0 mg/L) on the intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome of common carp. Trichlorfon exposure significantly reduced the height of intestinal villus and decreased the expression levels of tight junction genes, such as claudin-2, occludin and ZO-1, in common carp. Moreover, the activities of antioxidant enzymes, such as CAT, SOD and GSH-Px, exhibited a decreasing trend with increasing trichlorfon concentrations, while the contents of MDA and ROS elevated in the intestinal tissues of common carp. The mRNA and protein levels of pro-inflammatory cytokines TNF-α and IL-1ß were significantly upregulated by trichlorfon exposure. The level of anti-inflammatory cytokine TGF-ß was remarkably higher in 1.0 mg/L trichlorfon treatment group compared to control group. In addition, the results demonstrated that trichlorfon exposure could affect the microbiota community composition and decreased the community diversity in the gut of common carp. Notably, the proportions of some probiotic bacteria, namely, Lactobacillus, Bifidobacterium and Akkermansia, were observed to be reduced after trichlorfon exposure. In summary, the findings of this study indicate that exposure to different concentrations of trichlorfon can damage intestinal barrier, induce intestinal oxidative damage, trigger inflammatory reaction and alter gut microbiota structure in common carp.


Asunto(s)
Carpas , Exposición a Riesgos Ambientales , Microbioma Gastrointestinal , Estrés Oxidativo , Triclorfón , Animales , Carpas/microbiología , Carpas/fisiología , Exposición a Riesgos Ambientales/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/inducido químicamente , Intestinos/efectos de los fármacos , Intestinos/microbiología , Estrés Oxidativo/efectos de los fármacos , Triclorfón/toxicidad
11.
Environ Sci Pollut Res Int ; 27(34): 42898-42907, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32725569

RESUMEN

Blood biochemical profile can be used to evaluate the health status of fish and ambient environmental conditions. However, it is not well known in the aquaponic systems, let alone their differences between hydroponic and aquatic plants. A 5-month trial was conducted to investigate the changes in the growth performance and blood index of Qihe crucian carp Carassius auratus in eight aquaponic systems (control, Ipomoea aquatica, Lactuca sativa, Lemna minor, Amaranthus tricolor, Ceratophyllum demersum, Vallisneria spiralis, and C. demersum-net, indicated by CK, Ia, Ls, Lm, At, Cd, Vn, and Cd-ns). Results showed that weight gain rate and specific growth rate did not significantly differ among the eight groups. However, most blood parameters significantly differed among the eight groups. The glucose level and activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were generally larger in Cd, Lm, Vn, and CK groups, and smaller in Ia, Ls, or At groups. Additionally, the triglyceride, cholesterol, albumin, and albumin/globulin were mostly elevated in Ia and At groups. Moreover, the creatinine, total proteins, and globulin levels peaked in Vn group. These findings showed that the blood biochemical profile was more sensitive than the growth performances and that hydroponic plants can induce a higher production and more healthy status of Qihe crucian carp C. auratus when compared with aquatic plants or no plants.


Asunto(s)
Carpas , Animales , Carpa Dorada
12.
Environ Pollut ; 260: 114111, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32041087

RESUMEN

Marine biofouling by the highly invasive Asian date mussel, Musculista senhousia (Benson), has caused devastating ecological and economic consequences in most coastal seas. Acute and short-term exposure experiments have demonstrated the susceptibility of mussel byssus - a holdfast structure by which mussels strongly adhere to underwater substrates, to pH. Yet, the influence of long-term exposures, especially across multiple generations, is largely unknown. Here, we evaluated transgenerational effects of pH on byssal threads secreted by M. senhousia, and compared byssus performance in absence versus presence of predators. If no predation occurred, neither pH nor transgenerational exposure significantly affected the number, length and diameter of byssal threads. Under predation risk, mussels, even exposed to low pH, significantly enhanced byssus production. In particular, individuals originating from parents grown under low conditions produced significantly more, longer and stronger byssal threads compared with those spawn from parents exposed to high pH, demonstrating positive transgenerational effects which can confer mussel byssus resilience at low pH. Given the energetically expensive nature of byssus production, these observations can be in line with previously documented plasticity of energy metabolism arose following transgenerational exposure to low pH, which allows mussels to allocate more energy to fulfill the synthesis and secretion of byssal proteins. Our findings demonstrate the remarkable ability of highly invasive fouling mussel species to respond plastically and adapt behaviorally to low pH and hence provide important implications for linking marine biofouling, biological invasion, and coastal acidification.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , Estrés Fisiológico , Animales , Concentración de Iones de Hidrógeno , Especies Introducidas , Conducta Predatoria
13.
Ying Yong Sheng Tai Xue Bao ; 25(7): 2105-13, 2014 Jul.
Artículo en Zh | MEDLINE | ID: mdl-25345065

RESUMEN

Female Exopalaemon carinicauda at ovarian maturation stage II rearing by artificial propagation in the laboratory were chosen as test material. The shrimps were gradually acclimated to the experimental salinity levels of 2, 5, 10, 15, 20, 25 and 30 to determine the effects of salinity on spawning, embryonic development and larval growth of E. carinicauda. The results showed that the ovaries of female E. carinicauda could mature at all test salinity levels. However, it failed to spawn at salinity 2. Salinity levels from 10 to 20 were the most favorable for female E. carinicauda spawning. Although larval development was most successful in eggs incubated at salinity levels of 5 to 30, embryonic development were significantly affected by salinity, and the egg incubation period was shorter at salinities of 15, 20 and 25 than at the other salinities. There were no significant effects of salinity on the rates of larval metamorphosis and survival, but the dry mass of individuals was significantly affected by salinity. The dry mass of shrimps reared at salinities of 15 and 20 were significantly higher than at the other salinities. The growth of 20-day old shrimps was significantly affected by salinity. The specific growth rate increased with the increasing salinity level from 5 to 20, and then decreased at the salinity above 20. The mRNA level of gill Na(+)-K(+)-ATPase was high at high and low salinities, and the lowest at the theoretical salinity 17.5, which might be equal to the hemolymph osmotic pressure of E. carinicauda. It was implied that female parent E. carinicauda could reproduce in a wide range of salinities, while 20-day old shrimps presented higher growth rates at salinities near its theoretical isosmotic point.


Asunto(s)
Desarrollo Embrionario , Palaemonidae/crecimiento & desarrollo , Salinidad , Animales , Femenino , Branquias/enzimología , Larva , Presión Osmótica , Ovario/crecimiento & desarrollo , ARN Mensajero , Reproducción , Diferenciación Sexual , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA