Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580776

RESUMEN

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Asunto(s)
Adipocitos , Diferenciación Celular , Oxígeno , Oxígeno/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Humanos , Técnicas de Cultivo de Célula/métodos , Animales , Glucólisis , Hepatocitos/metabolismo , Hipoxia de la Célula , Mitocondrias/metabolismo , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Cultivadas , Glucosa/metabolismo , Macrófagos/metabolismo
2.
J Biol Chem ; : 107562, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002670

RESUMEN

The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks (RUSH) system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.

3.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315453

RESUMEN

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Glucógeno Sintasa Quinasa 3 beta , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismo
4.
Drug Resist Updat ; 73: 101060, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309140

RESUMEN

Cancer lactate metabolic reprogramming induces an elevated level of extracellular lactate and H+, leading to an acidic immunosuppressive tumor microenvironment (TEM). High lactic acid level may affect the metabolic programs of various cells that comprise an antitumor immune response, therefore, restricting immune-mediated tumor destruction, and leading to therapeutic resistance and unsatisfactory prognosis. Here, we report a metal-phenolic coordination-based nanocomplex loaded with a natural polyphenol galloflavin, which inhibits the function of lactate dehydrogenase, reducing the production of lactic acid, and alleviating the acidic immunosuppressive TME. Besides, the co-entrapped natural polyphenol carnosic acid and the synthetic PEG-Ce6 polyphenol derivative (serving as a photosensitizer) could induce immunogenic cancer cell death upon laser irradiation, which further activates immune system and promotes immune cell recruitment and infiltration in tumor tissues. We demonstrated that this nanocomplex-based combinational therapy could reshape the TME and elicit immune responses in a murine breast cancer model, which provides a promising strategy to enhance the therapeutic efficiency of drug-resistant breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias , Humanos , Animales , Ratones , Femenino , Ácido Láctico , Polifenoles/farmacología , Reprogramación Metabólica , Neoplasias/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Fenoles , Microambiente Tumoral
5.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36007240

RESUMEN

Natural products (NPs) and their derivatives are important resources for drug discovery. There are many in silico target prediction methods that have been reported, however, very few of them distinguish NPs from synthetic molecules. Considering the fact that NPs and synthetic molecules are very different in many characteristics, it is necessary to build specific target prediction models of NPs. Therefore, we collected the activity data of NPs and their derivatives from the public databases and constructed four datasets, including the NP dataset, the NPs and its first-class derivatives dataset, the NPs and all its derivatives and the ChEMBL26 compounds dataset. Conditions, including activity thresholds and input features, were explored to access the performance of eight machine learning methods of target prediction of NPs, including support vector machines (SVM), extreme gradient boosting, random forests, K-nearest neighbor, naive Bayes, feedforward neural networks (FNN), convolutional neural networks and recurrent neural networks. As a result, the NPs and all their derivatives datasets were selected to build the best NP-specific models. Furthermore, the consensus models, as well as the voting models, were additionally applied to improve the prediction performance. More evaluations were made on the external validation set and the results demonstrated that (1) the NP-specific model performed better on the target prediction of NPs than the traditional models training on the whole compounds of ChEMBL26. (2) The consensus model of FNN + SVM possessed the best overall performance, and the voting model can significantly improve recall and specificity.


Asunto(s)
Productos Biológicos , Algoritmos , Teorema de Bayes , Aprendizaje Automático , Redes Neurales de la Computación , Máquina de Vectores de Soporte
6.
Cancer Cell Int ; 24(1): 145, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654331

RESUMEN

Lung adenocarcinoma is a major public health problem with the low 5-year survival rate (15%) among cancers. Aberrant alterations of meiotic genes, which have gained increased attention recently, might contribute to elevated tumor risks. However, systematic and comprehensive studies based on the relationship between meiotic genes and LUAD recurrence and treatment response are still lacking. In this manuscript, we first confirmed that the meiosis related prognostic model (MRPM) was strongly related to LUAD progression via LASSO-Cox regression analyses. Furthermore, we identified the role of PPP2R1A in LUAD, which showed more contributions to LUAD process compared with other meiotic genes in our prognostic model. Additionally, repression of PPP2R1A enhances cellular susceptibility to nelfinavir-induced apoptosis and pyroptosis. Collectively, our findings indicated that meiosis-related genes might be therapeutic targets in LUAD and provided crucial guidelines for LUAD clinical intervention.

7.
J Immunol ; 209(2): 280-287, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777850

RESUMEN

Hand, foot, and mouth disease (HFMD), which is mainly caused by coxsackievirus A16 (CVA16) or enterovirus A71 (EV-A71), poses a serious threat to children's health. However, the long-term dynamics of the neutralizing Ab (NAb) response and ideal paired-serum sampling time for serological diagnosis of CVA16-infected HFMD patients were unclear. In this study, 336 CVA16 and 253 EV-A71 PCR-positive HFMD inpatients were enrolled and provided 452 and 495 sera, respectively, for NAb detection. Random-intercept modeling with B-spline was conducted to characterize NAb response kinetics. The NAb titer of CVA16 infection patients was estimated to increase from negative (2.1, 95% confidence interval [CI]: 1.4-3.3) on the day of onset to a peak of 304.8 (95% CI: 233.4-398.3) on day 21 and then remained >64 until 26 mo after onset. However, the NAb response level of EV-A71-infected HFMD patients was much higher than that of CVA16-infected HFMD patients throughout. The geometric mean titer was significantly higher in severe EV-A71-infected patients than in mild patients, with a 2.0-fold (95% CI: 1.4-3.2) increase. When a 4-fold rise in titer was used as the criterion for serological diagnosis of CVA16 and EV-A71 infection, acute-phase serum needs to be collected at 0-5 d, and the corresponding convalescent serum should be respectively collected at 17.4 (95% CI: 9.6-27.4) and 24.4 d (95% CI: 15.3-38.3) after onset, respectively. In conclusion, both CVA16 and EV-A71 infection induce a persistent humoral immune response but have different NAb response levels and paired-serum sampling times for serological diagnosis. Clinical severity can affect the anti-EV-A71 NAb response.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Anticuerpos Neutralizantes , Niño , China/epidemiología , Estudios de Cohortes , Enfermedad de Boca, Mano y Pie/diagnóstico , Humanos , Lactante , Estudios Longitudinales
8.
J Clin Periodontol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951121

RESUMEN

AIM: To identify an optimized strategy for the large-scale production of nanovesicles (NVs) that preserve the biological properties of exosomes (EXOs) for use in periodontal regeneration. MATERIALS AND METHODS: NVs from dental follicle stem cells (DFSCs) were prepared through extrusion, and EXOs from DFSCs were isolated. The yield of both extruded NVs (eNVs) and EXOs were quantified through protein concentration and particle number analyses. Their pro-migration, pro-proliferation and pro-osteogenesis capacities were compared subsequently in vitro. Additionally, proteomics analysis was conducted. To further evaluate the periodontal regeneration potential of eNVs and EXOs, they were incorporated into collagen sponges and transplanted into periodontal defects in rats. In vivo imaging and H&E staining were utilized to verify their biodistribution and safety. Micro-Computed Tomography analysis and histological staining were performed to examine the regeneration of periodontal tissues. RESULTS: The yield of eNVs was nearly 40 times higher than that of EXOs. Interestingly, in vitro experiments indicated that the pro-migration and pro-proliferation abilities of eNVs were superior, and the pro-osteogenesis potential was comparable to EXOs. More importantly, eNVs exhibited periodontal regenerative potential similar to that of EXOs. CONCLUSIONS: Extrusion has proven to be an efficient method for generating numerous eNVs with the potential to replace EXOs in periodontal regeneration.

9.
Angew Chem Int Ed Engl ; 63(4): e202316710, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38061992

RESUMEN

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.

10.
Funct Integr Genomics ; 23(3): 221, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37400733

RESUMEN

Glycolysis has a major role in cancer progression and can affect the tumor immune microenvironment, while its specific role in lung adenocarcinoma (LUAD) remains poorly studied. We obtained publicly available data from The Cancer Genome Atlas and Gene Expression Omnibus databases and used R software to analyze the specific role of glycolysis in LUAD. The Single Sample Gene Set Enrichment Analysis (ssGSEA) indicated a correlation between glycolysis and unfavorable clinical outcome, as well as a repression effect on the immunotherapy response of LUAD patients. Pathway enrichment analysis revealed a significant enrichment of MYC targets, epithelial-mesenchymal transition (EMT), hypoxia, G2M checkpoint, and mTORC1 signaling pathways in patients with higher activity of glycolysis. Immune infiltration analysis showed a higher infiltration of M0 and M1 macrophages in patients with elevated activity of glycolysis. Moreover, we developed a prognosis model based on six glycolysis-related genes, including DLGAP5, TOP2A, KIF20A, OIP5, HJURP, and ANLN. Both the training and validation cohorts demonstrated the high efficiency of prognostic prediction in this model, which identified that patients with high risk may have a poorer prognosis and lower sensitivity to immunotherapy. Additionally, we also found that Th2 cell infiltration may predict poorer survival and resistance to immunotherapy. The study indicated that glycolysis is significantly associated with poor prognosis in patients with LUAD and immunotherapy resistance, which might be partly dependent on the Th2 cell infiltration. Additionally, the signature comprised of six genes related to glycolysis showed promising predictive value for LUAD prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Células Th2 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Glucólisis/genética , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Microambiente Tumoral/genética
11.
Acta Pharmacol Sin ; 44(10): 1962-1976, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37169852

RESUMEN

Atherosclerosis is a major cause of death and disability in cardiovascular disease. Atherosclerosis associated with lipid accumulation and chronic inflammation leads to plaques formation in arterial walls and luminal stenosis in carotid arteries. Current approaches such as surgery or treatment with statins encounter big challenges in curing atherosclerosis plaque. The infiltration of proinflammatory M1 macrophages plays an essential role in the occurrence and development of atherosclerosis plaque. A recent study shows that TRIM24, an E3 ubiquitin ligase of a Trim family protein, acts as a valve to inhibit the polarization of anti-inflammatory M2 macrophages, and elimination of TRIM24 opens an avenue to achieve the M2 polarization. Proteolysis-targeting chimera (PROTAC) technology has emerged as a novel tool for the selective degradation of targeting proteins. But the low bioavailability and cell specificity of PROTAC reagents hinder their applications in treating atherosclerosis plaque. In this study we constructed a type of bioinspired PROTAC by coating the PROTAC degrader (dTRIM24)-loaded PLGA nanoparticles with M2 macrophage membrane (MELT) for atherosclerosis treatment. MELT was characterized by morphology, size, and stability. MELT displayed enhanced specificity to M1 macrophages as well as acidic-responsive release of dTRIM24. After intravenous administration, MELT showed significantly improved accumulation in atherosclerotic plaque of high fat and high cholesterol diet-fed atherosclerotic (ApoE-/-) mice through binding to M1 macrophages and inducing effective and precise TRIM24 degradation, thus resulting in the polarization of M2 macrophages, which led to great reduction of plaque formation. These results suggest that MELT can be considered a potential therapeutic agent for targeting atherosclerotic plaque and alleviating atherosclerosis progression, providing an effective strategy for targeted atherosclerosis therapy.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Quimera Dirigida a la Proteólisis , Animales , Ratones , Antiinflamatorios/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Inflamación/tratamiento farmacológico , Macrófagos , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , Quimera Dirigida a la Proteólisis/farmacología , Quimera Dirigida a la Proteólisis/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Nanopartículas/uso terapéutico
12.
Acta Pharmacol Sin ; 44(5): 1051-1065, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36347997

RESUMEN

Previous studies have shown mitochondrial dysfunction in various acute kidney injuries and chronic kidney diseases. Lipoic acid exerts potent effects on oxidant stress and modulation of mitochondrial function in damaged organ. In this study we investigated whether alpha lipoamide (ALM), a derivative of lipoic acid, exerted a renal protective effect in a type 2 diabetes mellitus mouse model. 9-week-old db/db mice were treated with ALM (50 mg·kg-1·d-1, i.g) for 8 weeks. We showed that ALM administration did not affect blood glucose levels in db/db mice, but restored renal function and significantly improved fibrosis of kidneys. We demonstrated that ALM administration significantly ameliorated mitochondrial dysfunction and tubulointerstitial fibrotic lesions, along with increased expression of CDX2 and CFTR and decreased expression of ß-catenin and Snail in kidneys of db/db mice. Similar protective effects were observed in rat renal tubular epithelial cell line NRK-52E cultured in high-glucose medium following treatment with ALM (200 µM). The protective mechanisms of ALM in diabetic kidney disease (DKD) were further explored: Autodock Vina software predicted that ALM could activate RXRα protein by forming stable hydrogen bonds. PROMO Database predicted that RXRα could bind the promoter sequences of CDX2 gene. Knockdown of RXRα expression in NRK-52E cells under normal glucose condition suppressed CDX2 expression and promoted phenotypic changes in renal tubular epithelial cells. However, RXRα overexpression increased CDX2 expression which in turn inhibited high glucose-mediated renal tubular epithelial cell injury. Therefore, we reveal the protective effect of ALM on DKD and its possible potential targets: ALM ameliorates mitochondrial dysfunction and regulates the CDX2/CFTR/ß-catenin signaling axis through upregulation and activation of RXRα. Schematic figure illustrating that ALM alleviates diabetic kidney disease by improving mitochondrial function and upregulation and activation of RXRα, which in turn upregulated CDX2 to exert an inhibitory effect on ß-catenin activation and nuclear translocation. RTEC renal tubular epithelial cell. ROS Reactive oxygen species. RXRα Retinoid X receptor-α. Mfn1 Mitofusin 1. Drp1 dynamic-related protein 1. MDA malondialdehyde. 4-HNE 4-hydroxynonenal. T-SOD Total-superoxide dismutase. CDX2 Caudal-type homeobox transcription factor 2. CFTR Cystic fibrosis transmembrane conductance regulator. EMT epithelial mesenchymal transition. α-SMA Alpha-smooth muscle actin. ECM extracellular matrix. DKD diabetic kidney disease. Schematic figure was drawn by Figdraw ( www.figdraw.com ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ácido Tióctico , Animales , Ratones , Ratas , beta Catenina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Transición Epitelial-Mesenquimal , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Glucosa/metabolismo , Riñón/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Receptor alfa X Retinoide/efectos de los fármacos , Receptor alfa X Retinoide/metabolismo
13.
Int J Audiol ; 62(12): 1187-1195, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36053255

RESUMEN

OBJECTIVE: Hyperacusis is reported to occur in 3.2-17.1% of the general paediatric population with higher rates in clinical populations such as autism spectrum disorders (ASD). Although hyperacusis is a relatively common form of decreased sound tolerance (DST), no valid paediatric hyperacusis measures are currently available. The purpose of the present study was to develop and validate a paediatric version of the Khalfa Hyperacusis Questionnaire (HQ) as a first step towards filling this measurement gap. DESIGN: A cross-sectional design was used to evaluate therapist opinions of the paediatric version (P-HQ) and to field test the P-HQ in parents of children with and without ASD. Total scores were compared between ASD and non-ASD groups. STUDY SAMPLE: Eleven paediatric occupational and speech therapists with expertise in ASD, 64 parents of children with ASD and 37 parents of children without ASD completed online questionnaires. Psychometric analyses were conducted. RESULTS: A unidimensional construct was found underlying P-HQ and all items displayed sufficient theoretical relevance to hyperacusis and adequate psychometric properties. CONCLUSIONS: The P-HQ demonstrates good internal consistency and shows promise as a potential screening tool for identifying DST in ASD. Further research is warranted to establish normative data and validate cut-off scores.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Niño , Hiperacusia/diagnóstico , Estudios Transversales , Encuestas y Cuestionarios , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico
14.
Mol Cancer ; 21(1): 186, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171576

RESUMEN

BACKGROUND: Lung cancer is one of the fatal cancers worldwide, and over 60% of patients are lung adenocarcinoma (LUAD). Our clinical data demonstrated that DNA methylation of the promoter region of miR-126-3p was upregulated, which led to the decreased expression of miR-126-3p in 67 cases of lung cancer tissues, implying that miR-126-3p acted as a tumor suppressor. Transduction of miR-126-3p is a potential therapeutic strategy for treating LUAD, yet the physiological environment and properties of miRNA challenge current transduction approaches. METHODS: We evaluated the expression of miR-126-3p in 67 pairs of lung cancer tissues and the corresponding adjacent non-tumorous tissues by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The relationship between the overall survival of lung cancer patients and miR-126-3p was analyzed by the Cancer Genome Atlas cohort database (Oncolnc, http://www.oncolnc.org ). We analyzed DNA methylation Methylation-specific PCR (MSP) analysis. To determine whether ADAM9 is the direct target of miR-126-3p, we performed the 3'-UTR luciferase reporter assay. The protein levels in the cells or tissues were evaluated with western blotting (WB) analysis. The biodistribution of nanoparticles were monitored by in vivo tracking system. RESULTS: We describe the development of novel stealth and matrix metalloproteinase 2 (MMP2)-activated biomimetic nanoparticles, which are constructed using MMP2-responsive peptides to bind the miR-126-3p (known as MAIN), and further camouflaged with red blood cell (RBC) membranes (hence named REMAIN). REMAIN was able to effectively transduce miRNA into lung cancer cells and release them via MMP2 responsiveness. Additionally, REMAIN possessed the advantages of the natural RBC membrane, including extended circulation time, lower toxicity, better biocompatibility, and immune escape. Moreover, in vitro and in vivo results demonstrated that REMAIN effectively induced apoptosis of lung cancer cells and inhibited LUAD development and progression by targeting ADAM9. CONCLUSION: The novel style of stealth and MMP2-activated biomimetic nanoparticles show great potential in miRNA delivery.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Nanopartículas , Regiones no Traducidas 3' , Proteínas ADAM , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/terapia , Biomimética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Distribución Tisular
15.
Org Biomol Chem ; 20(37): 7415-7418, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36102881

RESUMEN

A novel chiral P,Se-heterodonor ligand has been designed and prepared through an efficient and simple operation. This ligand can be successfully applied to Pd-catalyzed asymmetric allylic substitution with C- and N-nucleophiles, producing a diverse range of chiral allylic products in high yields and enantioselectivities (up to 99% yield and 95% ee).


Asunto(s)
Paladio , Catálisis , Ligandos , Compuestos Organofosforados , Estereoisomerismo
16.
Acta Pharmacol Sin ; 43(11): 2946-2955, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35388129

RESUMEN

Lung adenocarcinoma (LUAD) characterized by high metastasis and mortality is the leading subtype of non-small cell lung cancer. Evidence shows that some microRNAs (miRNAs) may act as oncogenes or tumor suppressor genes, leading to malignant tumor occurrence and progression. To better understand the molecular mechanism associated with miRNA methylation in LUAD progression and clinical outcomes, we investigated the correlation between miR-148a-3p methylation and the clinical features of LUAD. In the LUAD cell lines and tumor tissues from patients, miR-148a-3p was found to be significantly downregulated, while the methylation of miR-148a-3p promoter was notably increased. Importantly, miR-148a-3p hypermethylation was closely associated with lymph node metastasis. We demonstrated that mitogen-activated protein (MAP) kinase kinase kinase 9 (MAP3K9) was the target of miR-148a-3p and that MAP3K9 levels were significantly increased in both LUAD cell lines and clinical tumor tissues. In A549 and NCI-H1299 cells, overexpression of miR-148a-3p or silencing MAP3K9 significantly inhibited cell growth, migration, invasion and cytoskeleton reorganization accompanied by suppressing the epithelial-mesenchymal transition. In a nude mouse xenograft assay we found that tumor growth was effectively inhibited by miR-148a-3p overexpression. Taken together, the promoter methylation-associated decrease in miR-148a-3p could lead to lung cancer metastasis by targeting MAP3K9. This study suggests that miR-148a-3p and MAP3K9 may act as novel therapeutic targets for the treatment of LUAD and have potential clinical applications.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metilación , MicroARNs/genética , MicroARNs/metabolismo
17.
Int J Med Sci ; 19(3): 434-445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370456

RESUMEN

Purpose: We aimed to evaluate whether CEMIP plays any role in the survival outcome of breast cancer (BC) patients, as well as to explore the regulatory mechanism of CEMIP in BC. Methods: We evaluated the expression and prognostic effect of CEMIP in BC patients using the Oncomine, GEPIA, UALCAN, and Kaplan-Meier plotter databases. Additionally, we detected CEMIP mRNA and protein levels in BC and normal tissues via PCR and western blotting analyses. Through immunochemistry analysis, we quantified CEMIP expression in 233 samples from BC patients. We then analyzed the link between the survival outcomes and CEMIP expression based on these clinical samples. Furthermore, we explored the immune-related molecules regulated by CEMIP and its coexpressed genes using the STRING database. Results: CEMIP expression was higher in BC tissues than in normal tissues. Patients with high CEMIP mRNA levels had a worse survival outcome. Similarly, patients expressing CEMIP had significantly shorter overall survival and disease-free survival than those not expressing the protein (P < 0.01). Some lymphocytes, immune inhibitors, immune stimulators, MHC molecules, chemokines, and chemokine receptors can be regulated by CEMIP, and CEMIP and its coexpressed genes can participate in the hyaluronan biosynthetic process, hyaluronan catabolic process, and other related biological processes in the progression of BC. Conclusion: Compared to normal tissues, BC tissues had higher number of CEMIP transcripts. CEMIP expression was associated with an adverse prognosis. CEMIP and its coexpressed genes can participate in the progression of BC. Therefore, CEMIP may be a potential biomarker for the treatment of BC patients.


Asunto(s)
Neoplasias de la Mama , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico
18.
J Dairy Sci ; 105(2): 1072-1083, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998545

RESUMEN

Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) is a linear dextran that is built by glucose units via α-1,6 glycosidic bond. The primary objective of this study was to investigate the yield of XG5 EPS and its application in set yogurt. In laboratory scale, the culture conditions of XG5 EPS production were optimized using the L9 (33) orthogonal test. Here, the optimized yield of XG5 EPS was 26.02 g/L under the conditions of 100 g/L sucrose, initial pH 7.0, 25°C incubation, and 100 rpm for 36 h in a shaking flask. Based on the optimized parameters of laboratory scale, a pilot fed-batch fermentation was performed in a 50-L bioreactor with an adjusted agitation speed of 20 rpm. The XG5 EPS yield reached 40.07 g/L in fed-batch fermentation, which was 54% higher than that achieved in laboratory scale. In addition, XG5 EPS was added into set yogurt to investigate its effect on the stability of set yogurt. Our data demonstrated that the XG5 EPS improved the water-holding capacity, texture profile, and viscosity of set yogurt during cold storage compared with the controls. In particular, addition of 0.5% XG5 EPS increased the structure of 3-dimensional network of set yogurt, which eventually improved the physical stability of the set yogurt. Overall, this study provided new insights for exploring the pilot scale production and application of dextran.


Asunto(s)
Polisacáridos Bacterianos , Yogur , Animales , Fermentación , Leuconostoc
19.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361621

RESUMEN

Effective phage cocktails consisting of multiple virus types are essential for successful phage therapy against pandrug-resistant pathogens, including Salmonella enterica serovar (S.) Typhimurium. Here we show that a Salmonella phage, F118P13, with non-productive infection and a lytic phage, PLL1, combined to inhibit pandrug-resistant S. Typhimurium growth and significantly limited resistance to phages in vitro. Further, intraperitoneal injection with this unique phage combination completely protected mice from Salmonella-induced death and inhibited bacterial proliferation rapidly in various organs. Furthermore, the phage combination treatment significantly attenuated the inflammatory response, restored the generation of CD4+ T cells repressed by Salmonella, and allowed macrophages and granulocytes to participate in immunophage synergy to promote bacterial clearance. Crucially, the non-productive phage F118P13 is less likely to be cleared by the immune system in vivo, thus providing an alternative to phage cocktail against bacterial infections.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Salmonella enterica , Ratones , Animales , Salmonella typhimurium , Sistema Inmunológico
20.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142328

RESUMEN

Background: Osimertinib-based therapy effectively improves the prognosis of lung adenocarcinoma (LUAD) patients with epidermal growth factor receptor mutations. However, patients will have cancer progression after approximately one year due to the occurrence of drug resistance. Extensive evidence has revealed that lipid metabolism and tumor-associated macrophage (TAM) are associated with drug resistance, which deserves further exploration. Methods: An osimertinib resistance index (ORi) was built to investigate the link between lipid metabolism and osimertinib resistance. The ORi was constructed and validated using TCGA and GEO data, and the relationship between ORi and immune infiltration was discussed. Weighted gene co-expression network analysis based on the M2/M1 macrophage ratio determined the hub gene TIAM2 and the biological function of TIAM2 in LUAD was verified in vitro. Results: ORi based on nine lipid metabolism-related genes was successfully constructed, which could accurately reflect the resistance of LUAD patients to osimertinib, predict the prognosis, and correlate with M2-like TAM. Additionally, TIAM2 was found to increase osimertinib tolerance, enhance cell motility, and promote M2-like TAM polarization in LUAD. Conclusions: The lipid metabolism gene is strongly connected with osimertinib resistance. TIAM2 contributes to osimertinib resistance, enhances cell motility, and induces M2-like TAM polarization in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Acrilamidas , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Compuestos de Anilina , Línea Celular Tumoral , Movimiento Celular/genética , Receptores ErbB/genética , Factores de Intercambio de Guanina Nucleótido , Humanos , Indoles , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pirimidinas , Macrófagos Asociados a Tumores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA