Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(17): 9413-9422, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32291340

RESUMEN

Astrogenesis is repressed in the early embryonic period and occurs in the late embryonic period. A variety of external and internal signals contribute to the sequential differentiation of neural stem cells. Here, we discovered that immune-related CD93 plays a critical negative role in the regulation of astrogenesis in the mouse cerebral cortex. We show that CD93 expression is detected in neural stem cells and neurons but not in astrocytes and declines as differentiation proceeds. Cd93 knockout increases astrogenesis at the expense of neuron production during the late embryonic period. CD93 responds to the extracellular matrix protein Multimerin 2 (MMRN2) to trigger the repression of astrogenesis. Mechanistically, CD93 delivers signals to ß-Catenin through a series of phosphorylation cascades, and then ß-Catenin transduces these signals to the nucleus to activate Zfp503 transcription. The transcriptional repressor ZFP503 inhibits the transcription of glial fibrillary acidic protein (Gfap) by binding to the Gfap promoter with the assistance of Grg5. Furthermore, Cd93 knockout mice exhibit autism-like behaviors. Taken together, our results reveal that CD93 is a negative regulator of the onset of astrogenesis and provide insight into therapy for psychiatric disorders.


Asunto(s)
Astrocitos/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Trastorno Autístico , Corteza Cerebral/citología , Corteza Cerebral/embriología , Electroporación , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Inflamación , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos ICR , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuroglía , Embarazo
2.
Nucleic Acids Res ; 46(17): 8817-8831, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-29982651

RESUMEN

Astrocytes play crucial roles in the central nervous system, and defects in astrocyte function are closely related to many neurological disorders. Studying the mechanism of gliogenesis has important implications for understanding and treating brain diseases. Epigenetic regulations have essential roles during mammalian brain development. Here, we demonstrate that histone H2A.Z.1 is necessary for the specification of multiple neural precursor cells (NPCs) and has specialized functions that regulate gliogenesis. Depletion of H2A.Z.1 suppresses gliogenesis and results in reduced astrocyte differentiation. Additionally, H2A.Z.1 regulates the acetylation of H3K56 (H3K56ac) by cooperating with the chaperone of ASF1a. Furthermore, RNA-seq data indicate that folate receptor 1 (FOLR1) participates in gliogenesis through the JAK-STAT signaling pathway. Taken together, our results demonstrate that H2A.Z.1 is a key regulator of gliogenesis because it interacts with ASF1a to regulate H3K56ac and then directly affects the expression of FOLR1, which acts as a signal-transducing component of the JAK-STAT signaling pathway.


Asunto(s)
Receptor 1 de Folato/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Neurogénesis/genética , Neuroglía/fisiología , Acetilación , Animales , Astrocitos/fisiología , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histonas/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Chaperonas Moleculares , Células-Madre Neurales , Embarazo , Transducción de Señal/genética , Transcripción Genética
3.
Development ; 143(15): 2732-40, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287808

RESUMEN

Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases.


Asunto(s)
Encéfalo/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Línea Celular , Femenino , Humanos , Inmunohistoquímica , Inmunoprecipitación , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
4.
EMBO Rep ; 15(10): 1053-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25227738

RESUMEN

Astrocyte differentiation is essential for late embryonic brain development, and autophagy is active during this process. However, it is unknown whether and how autophagy regulates astrocyte differentiation. Here, we show that Atg5, which is necessary for autophagosome formation, regulates astrocyte differentiation. Atg5 deficiency represses the generation of astrocytes in vitro and in vivo. Conversely, Atg5 overexpression increases the number of astrocytes substantially. We show that Atg5 activates the JAK2-STAT3 pathway by degrading the inhibitory protein SOCS2. The astrocyte differentiation defect caused by Atg5 loss can be rescued by human Atg5 overexpression, STAT3 overexpression, and SOCS2 knockdown. Together, these data demonstrate that Atg5 regulates astrocyte differentiation, with potential implications for brain disorders with autophagy deficiency.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebelosa/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/biosíntesis , Neurogénesis , Animales , Astrocitos/citología , Astrocitos/metabolismo , Autofagia , Proteína 5 Relacionada con la Autofagia , Corteza Cerebelosa/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Humanos , Janus Quinasa 2/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Factor de Transcripción STAT3/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética
5.
Cell Rep ; 40(11): 111350, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103829

RESUMEN

The intimate communication between the vascular and nervous systems is critical for maintaining central nervous system (CNS) development. However, whether cerebrovascular endothelial cells (ECs) can orchestrate neural precursor cell (NPC) proliferation and differentiation, and the identity of the signals involved therein, is unclear. Here, we find that the development of ECs is often accompanied by DNA damage. RNF20, an E3 ubiquitin ligase, is required for the DNA damage response (DDR). The deletion of RNF20 causes the accumulation of DNA damage in ECs, which fails to secrete cartilage intermediate layer protein 2 (CILP2). Moreover, the loss of endothelium-derived CILP2 alters the downstream cascade signaling of Wnt signaling pathways through the interaction with Wnt3a, which disturbs the NPC fate and causes autism-like behaviors in mice. Therefore, the close and refined controlled neurovascular interactions ensure the normal operation of neurogenesis during embryonic development.


Asunto(s)
Células Endoteliales , Células-Madre Neurales , Animales , Diferenciación Celular , Proliferación Celular , Desarrollo Embrionario , Células Endoteliales/metabolismo , Femenino , Ratones , Células-Madre Neurales/metabolismo , Embarazo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cell Death Differ ; 25(2): 294-306, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28984873

RESUMEN

Astrocyte has crucial roles in the central nervous system and accumulating evidence has shown its core function for brain complexity, plasticity and cognition. However, the essential key factors in the precise regulation of astrocytic differentiation remain largely uncharacterized. Here, we identified that RNF20, an E3 ligase of H2BK120 in the mammalian system, regulates astrocyte production from neural precursor cells. RNF20 deficiency by shRNA knockdown or deletion in conditional knockout mice impairs the astrocytic differentiation. Overexpression of RNF20 promotes astrocytic differentiation and can rescue the astrocyte production deficiency caused by RNF20 disruption. Furthermore, we demonstrate that RNF20 functions cooperatively with acetyltransferase MOF to promote astrocytic generation. RNF20-mediated H2Bub1 cooperating with MOF-mediated H4K16ac activates the transcription of Stat3. Together, these data indicate RNF20 is a critical regulator of astrocytic production, which may contribute to the understanding of neurological disorders with glial dysgenesis.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Epigénesis Genética/genética , Factor de Transcripción STAT3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Ratones , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT3/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/deficiencia
7.
Sci Rep ; 4: 6010, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25109817

RESUMEN

Autophagy plays an important role in the central nervous system. However, it is unknown how autophagy regulates cortical neurogenesis during early brain development. Here, we report that autophagy-related gene 5 (Atg5) expression increased with cortical development and differentiation. The suppression of Atg5 expression by knockdown led to inhibited differentiation and increased proliferation of cortical neural progenitor cells (NPCs). Additionally, Atg5 suppression impaired cortical neuronal cell morphology. We lastly observed that Atg5 was involved in the regulation of the ß-Catenin signaling pathway. The ß-Catenin phosphorylation level decreased when Atg5 was blocked. Atg5 cooperated with ß-Catenin to modulate cortical NPCs differentiation and proliferation. Our results revealed that Atg5 has a crucial role in cortical neurogenesis during early embryonic brain development, which may contribute to the understanding of neurodevelopmental disorders caused by autophagy dysregulation.


Asunto(s)
Encéfalo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Encéfalo/crecimiento & desarrollo , Proliferación Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/patología , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos ICR , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA