Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352203

RESUMEN

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Asunto(s)
ADN Ligasa (ATP)/ultraestructura , Enzimas Reparadoras del ADN/ultraestructura , Proteína Quinasa Activada por ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Apoptosis/genética , Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestructura , Complejos Multiproteicos/genética , Fosforilación/genética
2.
Nature ; 601(7894): 643-648, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987222

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5'-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Adenosina Trifosfato , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Holoenzimas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Piridazinas , Quinazolinas
3.
Nucleic Acids Res ; 48(19): 10953-10972, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045735

RESUMEN

Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1's ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA-RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Unión Proteica , Multimerización de Proteína
5.
Adv Sci (Weinh) ; 11(28): e2403485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803048

RESUMEN

DNA damage plays a significant role in the tumorigenesis and progression of the disease. Abnormal DNA repair affects the therapy and prognosis of cancer. In this study, it is demonstrated that the deubiquitinase USP25 promotes non-homologous end joining (NHEJ), which in turn contributes to chemoresistance in cancer. It is shown that USP25 deubiquitinates SHLD2 at the K64 site, which enhances its binding with REV7 and promotes NHEJ. Furthermore, USP25 deficiency impairs NHEJ-mediated DNA repair and reduces class switch recombination (CSR) in USP25-deficient mice. USP25 is overexpressed in a subset of colon cancers. Depletion of USP25 sensitizes colon cancer cells to IR, 5-Fu, and cisplatin. TRIM25 is also identified, an E3 ligase, as the enzyme responsible for degrading USP25. Downregulation of TRIM25 leads to an increase in USP25 levels, which in turn induces chemoresistance in colon cancer cells. Finally, a peptide that disrupts the USP25-SHLD2 interaction is successfully identified, impairing NHEJ and increasing sensitivity to chemotherapy in PDX model. Overall, these findings reveal USP25 as a critical effector of SHLD2 in regulating the NHEJ repair pathway and suggest its potential as a therapeutic target for cancer therapy.


Asunto(s)
Roturas del ADN de Doble Cadena , Ubiquitina Tiolesterasa , Animales , Ratones , Roturas del ADN de Doble Cadena/efectos de los fármacos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Modelos Animales de Enfermedad , Reparación del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
6.
Nat Struct Mol Biol ; 30(2): 140-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36604499

RESUMEN

DNA-dependent protein kinase (DNA-PK), a multicomponent complex including the DNA-PK catalytic subunit and Ku70/80 heterodimer together with DNA, is central to human DNA damage response and repair. Using a DNA-PK-selective inhibitor (M3814), we identified from one dataset two cryo-EM structures of the human DNA-PK complex in different states, the intermediate state and the active state. Here we show that activation of the kinase is regulated through conformational changes caused by the binding ligand and the string region (residues 802-846) of the DNA-PK catalytic subunit, particularly the helix-hairpin-helix motif (residues 816-836) that interacts with DNA. These observations demonstrate the regulatory role of the ligand and explain why DNA-PK is DNA dependent. Cooperation and coordination among binding partners, disordered flexible regions and mechanically flexible HEAT repeats modulate the activation of the kinase. Together with previous findings, these results provide a better molecular understanding of DNA-PK catalysis.


Asunto(s)
Proteína Quinasa Activada por ADN , Proteínas Serina-Treonina Quinasas , Humanos , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fosforilación , Ligandos , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , ADN/metabolismo , Reparación del ADN , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo
7.
Prog Biophys Mol Biol ; 163: 60-73, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33285184

RESUMEN

Non-homologous end joining (NHEJ) is the preferred pathway for the repair of DNA double-strand breaks in humans. Here we describe three structural aspects of the repair pathway: stages, scaffolds and strings. We discuss the orchestration of DNA repair to guarantee robust and efficient NHEJ. We focus on structural studies over the past two decades, not only using X-ray diffraction, but also increasingly exploiting cryo-EM to investigate the macromolecular assemblies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Microscopía por Crioelectrón , Reparación del ADN , Humanos , Difracción de Rayos X
8.
Nat Struct Mol Biol ; 28(1): 13-19, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33077952

RESUMEN

DNA double-strand breaks are the most dangerous type of DNA damage and, if not repaired correctly, can lead to cancer. In humans, Ku70/80 recognizes DNA broken ends and recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form DNA-dependent protein kinase holoenzyme (DNA-PK) in the process of non-homologous end joining (NHEJ). We present a 2.8-Å-resolution cryo-EM structure of DNA-PKcs, allowing precise amino acid sequence registration in regions uninterpreted in previous 4.3-Å X-ray maps. We also report a cryo-EM structure of DNA-PK at 3.5-Å resolution and reveal a dimer mediated by the Ku80 C terminus. Central to dimer formation is a domain swap of the conserved C-terminal helix of Ku80. Our results suggest a new mechanism for NHEJ utilizing a DNA-PK dimer to bring broken DNA ends together. Furthermore, drug inhibition of NHEJ in combination with chemo- and radiotherapy has proved successful, making these models central to structure-based drug targeting efforts.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética , Autoantígeno Ku/metabolismo , Secuencia de Aminoácidos/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Dimerización , Humanos , Conformación Molecular
9.
Essays Biochem ; 64(5): 791-806, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32579168

RESUMEN

Non-homologous end joining (NHEJ) is one of the two principal damage repair pathways for DNA double-strand breaks in cells. In this review, we give a brief overview of the system including a discussion of the effects of deregulation of NHEJ components in carcinogenesis and resistance to cancer therapy. We then discuss the relevance of targeting NHEJ components pharmacologically as a potential cancer therapy and review previous approaches to orthosteric regulation of NHEJ factors. Given the limited success of previous investigations to develop inhibitors against individual components, we give a brief discussion of the recent advances in computational and structural biology that allow us to explore different targets, with a particular focus on modulating protein-protein interaction interfaces. We illustrate this discussion with three examples showcasing some current approaches to developing protein-protein interaction inhibitors to modulate the assembly of NHEJ multiprotein complexes in space and time.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Humanos , Mapas de Interacción de Proteínas
10.
Prog Biophys Mol Biol ; 147: 26-32, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31014919

RESUMEN

DNA double-strand breaks (DSBs), generated by ionizing radiation, reactive oxygen species and DNA replication across nicks, are the most severe DNA damage in eukaryotic cells. Non-Homologous End Joining repairs DNA double-strand breaks directly without a template and so can take place at any point in the cell cycle. Ku70/80 heterodimers rapidly assemble around broken DNA ends, allowing DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase, to be recruited and facilitating synapsis of broken DNA ends. This then provides a stage for end-processing and ligation. Here we review progress leading in 2017 to the medium resolution X-ray structure of DNA-PKcs, a single polypeptide chain of 4128 amino acids. This was followed quickly by chain tracing of cryo-EM structures of DNA-PKcs in complex with Ku and DNA. We discuss how combination of structural information from X-ray and cryo-EM studies can produce a working model for complex multicomponent molecular assemblies such as those found in DNA-double-strand-break repair.


Asunto(s)
Microscopía por Crioelectrón , Cristalografía por Rayos X , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/metabolismo , Animales , Humanos , Dominios Proteicos
11.
Nat Struct Mol Biol ; 25(6): 482-487, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29786079

RESUMEN

Repairing DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) requires multiple proteins to recognize and bind DNA ends, process them for compatibility, and ligate them together. We constructed novel DNA substrates for single-molecule nanomanipulation, allowing us to mechanically detect, probe, and rupture in real-time DSB synapsis by specific human NHEJ components. DNA-PKcs and Ku allow DNA end synapsis on the 100 ms timescale, and the addition of PAXX extends this lifetime to ~2 s. Further addition of XRCC4, XLF and ligase IV results in minute-scale synapsis and leads to robust repair of both strands of the nanomanipulated DNA. The energetic contribution of the different components to synaptic stability is typically on the scale of a few kilocalories per mole. Our results define assembly rules for NHEJ machinery and unveil the importance of weak interactions, rapidly ruptured even at sub-picoNewton forces, in regulating this multicomponent chemomechanical system for genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Técnicas Genéticas/instrumentación , Animales , Proteínas de Unión al Calcio/metabolismo , Emparejamiento Cromosómico , ADN/genética , ADN/metabolismo , ADN Ligasa (ATP)/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Fosforilación , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA