Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(4): 1651-1658, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38239061

RESUMEN

The development of a highly accurate electrochemiluminescence (ECL) signal switch to avoid nonspecific stimulus responses is currently a significant and challenging task. Here, we constructed a universal signal switch utilizing a luminophore-quencher pair of mesostructured silica xerogel-confined polymer and gold nanoparticles (Au NPs) that can accurately detect low-abundance epigenetic markers in complex sample systems. Notably, the ECL polymer encapsulated in mesostructured silica xerogel acts as a luminophore, which demonstrated a highly specific dependence on the Au NPs-mediated energy transfer quenching. To demonstrate the feasibility, we specifically labeled the 5-hydroxymethylcytosine (5hmC) site on the random sequence using a double-stranded (dsDNA) tag that was skillfully designed with the CRISPR/Cas12a activator and recombinant polymerase amplification (RPA) template. After amplification by RPA, a large amount of dsDNA tag was generated as the activator to initiate the trans-cleavage activity of CRISPR/Cas12a and subsequently activate the signal switch, allowing for precise quantification of 5hmC. The ECL signal switch improves the stability of the luminophore and prevents nonspecific stimulus responses, providing a new paradigm for constructing high-precision biosensors.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Polímeros , Oro , Dióxido de Silicio , Mediciones Luminiscentes , Técnicas Electroquímicas , Epigénesis Genética
2.
Anal Chem ; 96(5): 2117-2123, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38268109

RESUMEN

Despite the progress that has been made in diverse DNA-based nanodevices to in situ monitor the activity of the DNA repair enzymes in living cells, the significance of improving both the sensitivity and specificity has remained largely neglected and understudied. Herein, we propose a regulatable DNA nanodevice to specifically monitor the activity of DNA repair enzymes for early evaluation of cancer mediated by genomic instability. Concretely, an AND logic gate-regulated DNAzyme nanoflower was rationally designed by the self-assembly of the DNA duplex modified with both apurinic/apyrimidinic (AP) site and methyl lesion site. The DNAzyme nanoflower could be reconfigured under the repair of AP sites and O6-methylguanine sites by apurinic/apyrimidinic endonuclease 1 (APE1) and O6-methylguanine methyltransferase (MGMT) to produce a fluorescent signal, realizing the sensitive monitoring of the activity of APE1 and MGMT. Compared to the free DNAzyme duplex, the fluorescent response of the DNAzyme nanoflower increased by 60%, due to the effective enrichment of the DNA probes by the nanoflower structure. More importantly, we have demonstrated that the dual-enzyme activated strategy allows imaging of specific cancer cells in the AND logic gate manner using MCF-7 as a cancer cell model, improving the specificity of cancer cell imaging. This AND logic gate-regulated multifunctional DNAzyme nanoflower provides a simple tool for simultaneously visualizing multiple DNA repair enzymes, holding great potential in early clinical diagnosis and drug discovery.


Asunto(s)
Reparación del ADN , ADN Catalítico , Daño del ADN , Enzimas Reparadoras del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/química
3.
J Am Chem Soc ; 145(23): 12812-12822, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37249527

RESUMEN

Life molecules' distributions in live systems construct the complex dynamic reaction networks, whereas it is still challenging to demonstrate the dynamic distributions of biomolecules in live systems. Herein, we proposed a dynamic analysis strategy via sequence-structure bispecific RNA with state-adjustable molecules to monitor the dynamic concentration and spatiotemporal localization of these biomolecules in live cells based on the new insight of fluorescent RNA (FLRNA) interactions and their mechanism of fluorescence enhancement. Typically, computer-based nucleic acid-molecular docking simulation and molecular theoretical calculation have been proposed to provide a simple and straightforward method for guiding the custom-design of FLRNA. Impressively, a novel FLRNA with sequence and structure bispecific RNA named as a structure-switching aptamer (SSA) was introduced to monitor the real-time concentration and spatiotemporal localization of biomolecules, contributing to a deeper insight of the dynamic monitoring and visualization of biomolecules in live systems.


Asunto(s)
Colorantes Fluorescentes , ARN , ARN/química , Simulación del Acoplamiento Molecular , Colorantes Fluorescentes/química
4.
Anal Chem ; 95(37): 13897-13903, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37682117

RESUMEN

Despite the fact that electrochemiluminescent (ECL) performance of carbon dots (CDs) could be improved by modulating their surface defects, they are still restricted by inferior controllability and poor reproducibility. In this work, we disclosed a new approach for synthesizing luminescent groups rich in CDs (Lu-CDs) by engineering the luminol as molecular emission centers into the CDs, which exhibited an 80-fold stronger ECL intensity at an ECL onset potential of 0.6 V than the CDs without pre-implanted luminol. Different from the significant deviation between the ECL and fluorescence emission of other surface state-dominated CDs, the ECL emission of Lu-CDs was nearly consistent with its fluorescence emission at 465 nm, which was defined as the molecular emission dominated-ECL CDs herein. To prove this principle, the Lu-CDs were employed to construct an ECL biosensor for MCF-7 cell analysis based on the cell direct recognition and amplification strategy, which made the MCF-7 cells as nanomachines via specific binding with aptamer signal probes on the DNA triangular scaffold. The proposed biosensor displayed a wide detection range from 101 to 104 cell mL-1 and a low detection limit of 8.91 cells mL-1. Overall, this work not only presents a new strategy for preparing CDs with high controllability and excellent reproducibility but also provides a platform for tumor cell sensing.


Asunto(s)
Luminol , Neoplasias , Reproducibilidad de los Resultados , Ingeniería , Carbono , Comunicación Celular
5.
Anal Chem ; 95(25): 9598-9604, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37311025

RESUMEN

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are two of the most abundant epigenetic marks in mammalian genomes, and it has been proven that these dual epigenetic marks give a more accurate prediction of recurrence and survival in cancer than the individual mark. However, due to the similar structure and low expression of 5mC and 5hmC, it is challenging to distinguish and quantify the two methylation modifications. Herein, we employed the ten-eleven translocation family dioxygenases (TET) to convert 5mC to 5hmC via a specific labeling process, which realized the identification of the two marks based on a nanoconfined electrochemiluminescence (ECL) platform combined with the amplification strategy of a recombinase polymerase amplification (RPA)-assisted CRISPR/Cas13a system. Benefiting from the TET-mediated conversion strategy, a highly consistent labeling pathway was developed for identifying dual epigenetic marks on random sequence, which reduced the system error effectively. The ECL platform was established via preparing a carbonized polymer dot embedded SiO2 nanonetwork (CPDs@SiO2), which exhibited higher ECL efficiencies and more stable ECL performance compared to those of the scattered emitters due to the nanoconfinement-enhanced ECL effect. The proposed bioanalysis strategy could be employed for the identification and quantification of 5mC and 5hmC in the range from 100 aM to 100 pM, respectively, which provides a promising tool for early diagnosis of diseases associated with abnormal methylation.


Asunto(s)
5-Metilcitosina , Citosina , Animales , 5-Metilcitosina/metabolismo , Citosina/metabolismo , Secuencia de Bases , Dióxido de Silicio , Metilación de ADN , Mamíferos/metabolismo
6.
Anal Chem ; 94(7): 3313-3319, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35147411

RESUMEN

DNA methylation predominantly occurs within the CpG dinucleotide, which is the main epigenetic form of gene expression regulation in mammals. Genomic DNA with CpG sites has different sequence lengths and complex secondary structures, resulting in the complexity and diversity of the samples. Therefore, highly efficient quantification of DNA methylation in complex samples remains challenging. Herein, the regulatable DNAzyme motor triggered by strand displacement amplification (SDA) was designed to quantify 5-hydroxymethylcytosine (5hmC) signatures as a model. Briefly, the 5hmC sites as primary target were specifically labeled with DNA primers and converted into a large number of single-stranded DNA (secondary target) via the SDA reaction which could activate the DNAzyme motor. With the increase of secondary target, the DNAzyme motor gradually recovered its activity and could continuously cleave the track strands labeled quenching probes, causing electrochemiluminescence signal recovery and detection limit down to 0.49 fM for 5hmC. This strategy provides a new route to quantify natural base modifications in DNA and would hold promising potential for the early diagnosis of cancer and other diseases related to 5hmC.


Asunto(s)
ADN Catalítico , 5-Metilcitosina/análogos & derivados , ADN/química , ADN/genética , ADN Catalítico/química , Epigénesis Genética
7.
Anal Chem ; 94(47): 16402-16410, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36383421

RESUMEN

It is universally recognized that the quantification of DNA hydroxymethylation at random gene sequences still remains challenging. Herein, the highly sensitive identifying strategy of 5-hydroxymethylcytosine (5-hmC) without sequence specificity was achieved with a novel electrochemiluminescence (ECL) biosensor, which deftly integrated metal-organic framework (MOF)-derived amorphous MnOxSy nanoflowers (MnOxSy NFs) as a bifunctional co-reaction accelerator and cross-shaped DNA tracks as a well-regulated signal switch. Specifically, the target recognition process of 5-hmC was performed through specific chemical modification, where the hydroxymethyl sites were first aminated and then labeled with a 5'-carboxyl-functioned DNA walker, thus forming the target labeled DNA walker (5-ghmC-walker). Subsequently, the cross-shaped DNA tracks were ingeniously designed to endow the 5-ghmC-walker with continuous mechanical motion due to the long periodic linear alignment structure and well-regulated highly ordered interfaces. Furthermore, as a bifunctional co-reaction accelerator synthesized by in situ Mn-MOF template-sacrificing strategy, the MnOxSy NFs could promote the reduction of both dissolved O2 and S2O82-, remarkably boosting the ECL intensity of a peroxydisulfate (S2O82-) solution by 5.2 times compared to the pure S2O82- solution. Benefiting from specific target recognition and a dual-pathway strategy for boosting ECL, the proposed ECL platform can quantify 5-hmC with a wide linear range of 1 fM-1 nM and a low detection limit of 0.29 fM. This simple, highly sensitive strategy without sequence specificity provides a powerful platform for 5-hmC detection in the epigenetic study and disease pathogenesis.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Técnicas Electroquímicas , 5-Metilcitosina , ADN , Mediciones Luminiscentes , Límite de Detección
8.
Anal Chem ; 94(8): 3685-3692, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156809

RESUMEN

Covalent organic frameworks (COFs) have attracted widespread attention in the electrochemiluminescence (ECL) field owing to their high load capacity of ECL luminophores and porous structures, but their ECL performance is still limited by the intrinsic poor conductivity (generally <10-8 S m-1). To address this shortcoming, we used 2,3,6,7,10,11-hexaaminotriphenylene (HATP) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to synthesize a conductive COF (HHTP-HATP-COF, conductivity = 3.11 × 10-4 S m-1). Compared with HATP, HHTP, and low-conductive HHTP-DABZ-COF, HHTP-HATP-COF exhibited superior ECL performance, not only because HHTP-HATP-COF possessed massive ECL luminophores but also because its conductive porous framework accelerated charge transport in the whole framework and improved the utilization ratio of ECL luminophores. More interestingly, the ECL intensity of the HHTP-HATP-COF/S2O82- system was further improved after pre-reduction electrolysis due to the accumulation of HHTP-HATP-COF cation radicals. The experimental results showed that the ECL intensity of the HHTP-HATP-COF/S2O82- system after pre-reduction was about 1.64-, 3.96-, 6.88-, and 8.09-fold higher than those of HHTP-HATP-COF/S2O82-, HHTP-DABZ-COF/S2O82-, HHTP/S2O82-, and HATP/S2O82- systems, respectively. Considering the superior ECL property of the HHTP-HATP-COF/S2O82- system after pre-reduction, it was used as a high-efficient ECL beacon together with an aptamer/protein proximity binding-induced three-dimensional bipedal DNA walker to construct an ultrasensitive biosensor for thrombin detection, which displayed broad linearity (100 aM to 1 nM) with a detection limit of 62.1 aM. Overall, the work offered effective ways to increase ECL performance by the enhancement of conductivity and by the pre-reduction, proposing new ideas to design high-efficiency COF-based ECL materials and endowing conductive COFs with ECL biosensor application for the first time.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Estructuras Metalorgánicas/química , Fotometría
9.
Anal Chem ; 94(23): 8258-8266, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35640096

RESUMEN

Today, a lot of attention is being paid to the pre-miRNAs/miRNAs or activity of Dicer due to their important functions in various physiological processes. Especially, the intrinsic relationship among these associated targets is of significant importance for more in-depth research on the mechanism of disease formation and early diagnosis. Herein, a strategy for simultaneous bioanalysis of miRNAs/pre-miRNAs and Dicer enzyme based on the self-designed multi-path nucleic acid amplification technology was proposed. Typically, in the presence of pre-miRNA-155, it can hybridize with Helper to generate a structure with two new toeholds, one of which could react with H1, H2, and H3, performing a modified CHA reaction with obvious fluorescence responses of FAM, and another of which could hybridize with H4, H5, and H6 to construct the [H4-H5-H6]n DNA nanosphere with obvious fluorescence responses of Cy5. Similarly, miRNA-155 could just hybridize with H1, H2, and H3 to generate the same modified CHA reaction with obvious fluorescence responses of FAM. Due to the successful multi-path nucleic acid amplification, the proposed bioanalysis strategy could be successfully employed for miRNA-155 and pre-miRNA-155 analysis in the range from 500 pM to 100 nM and 1 to 300 nM, respectively. The proposed strategy could be applied to explore another inter-related nucleic acid relationship also, providing great potential in bioanalysis of various nucleic acids.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Ácidos Nucleicos , Límite de Detección , MicroARNs/química , MicroARNs/genética , Técnicas de Amplificación de Ácido Nucleico , Ribonucleasa III/genética
10.
Anal Chem ; 94(25): 9166-9175, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35708271

RESUMEN

Digital droplet technology has emerged as a powerful new tool for biomarker analysis. Temperature cycling, enzymes, and off-chip processes are, nevertheless, always required. Herein, we constructed a digital droplet auto-catalytic hairpin assembly (ddaCHA) microfluidic system to achieve digital quantification of single-molecule microRNA (miRNA). The designed continuous chip integrates droplet generation, incubation, and fluorescence imaging on the chip, avoiding the requirement for extra droplet re-collection and heating operations. Clearly, the digital readout was obtained by partitioning miRNA into many individual pL-sized small droplets in which the target molecule is either present ("positive") or absent ("negative"). Importantly, the suggested enzyme-free auto-catalytic hairpin assembly (aCHA) in droplets successfully mitigated the effects of the external environment and thermal cycling on droplets, and its reaction rate is significantly superior to that of traditional CHA. We got excellent sensitivity with a linear correlation from 1 pM to 10 nM and a detection limit of 0.34 pM in the fluorescence spectrum section, as well as high selectivity to other miRNAs. Furthermore, the minimum target concentration could be reduced to 10 fM based on the high-throughput tracking computation of fluorescent droplets with a self-developed Python script, and the fluorescence intensity distribution agreed well with the theoretical value, demonstrating that it is feasible to detect miRNA efficiently and accurately, which has great potential applications in clinical diagnostics and biochemical research.


Asunto(s)
MicroARNs , Técnicas de Amplificación de Ácido Nucleico , Catálisis , MicroARNs/análisis , MicroARNs/genética , Microfluídica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Imagen Óptica
11.
Anal Chem ; 94(45): 15832-15838, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36325718

RESUMEN

Exploring new electrochemiluminescence (ECL) luminophores with strong ECL emission is highly desirable for developing ultrasensitive ECL sensors. Herein, a pyrene-based hydrogen-bonded organic framework (Py-HOF) featuring prominent ECL performance was prepared by utilizing 1,3,6,8-tetrakis(p-benzoic acid) pyrene (H4TBAPy) with an aggregation-induced enhanced emission (AIEE) property as a building block, exhibiting a stronger ECL emission than those of H4TBAPy monomers, H4TBAPy aggregates, the low-porosity Py-HOF-210 °C and Py-HOF-180 °C. We have coined the term "the porosity- and aggregation-induced enhanced ECL (PAIE-ECL)" for this intriguing phenomenon. The Py-HOF displayed superb and stable ECL intensity, not only because the luminophore H4TBAPy was assembled into the Py-HOF via four pairs of O-H···O hydrogen bonds, which constrained the intramolecular movements to reduce nonradiative transition, but also because the H4TBAPy in Py-HOF was stacked in a slipped face-to-face mode to form J-aggregates that benefited the ECL enhancement. Furthermore, the high porosity of Py-HOF allowed the enrichment of coreactants and facilitated the migration of ions, electrons, and coreactants, which made it possible for the inner and outer H4TBAPy to be electrochemically excited. Considering the remarkable ECL performance, Py-HOF was first employed as an ECL probe combined with a 3D DNA nanomachine amplification strategy to assemble a hypersensitive "on-off" ECL sensor for the microRNA-141 assay, presenting a satisfactory linear range (100 aM to 1 nM) with a detection limit of 14.4 aM. The PAIE-ECL manifested by Py-HOF provided a bright avenue for the design and synthesis of outstanding HOF-based ECL materials and offered new opportunities for the development of ECL biosensors with excellent sensitivity.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas , Mediciones Luminiscentes , MicroARNs/química , Límite de Detección , Porosidad , Enlace de Hidrógeno , Pirenos , Hidrógeno
12.
Anal Chem ; 93(6): 3258-3265, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33529534

RESUMEN

A pyrene-based sp2 carbon-conjugated covalent organic framework (COF) nanosheet (Py-sp2c-CON) with strong and stable electrochemiluminescence (ECL) emission was constructed by C═C polycondensation of tetrakis(4-formylphenyl)pyrene (TFPPy) and 2,2'-(1,4-phenylene)diacetonitrile, which was employed as a highly efficient ECL emitter to fabricate an ECL biosensor for the first time. The Py-sp2c-CON exhibited higher ECL intensity and efficiency than those of TFPPy, bulk Py-sp2c-COF, and imine-linked pyrene COF, not only because the pyrene luminophores and aggregation-induced emissive luminogens (cyano-substituted phenylenevinylene) were topologically linked into Py-sp2c-CON, which greatly increased the immobilization amount of luminophores and decreased the aggregation-caused quenching effect and nonradiative transition but also because the porous ultrathin structure of Py-sp2c-CON effectively shortened transport distances of an electron, ion, and co-reactant (S2O82-), which made more ECL luminophores be activated and thus efficiently increased the utilization ratio of luminophores. More interestingly, when Bu4NPF6 was introduced into the Py-sp2c-CON/S2O82- system as a co-reaction accelerator, the ECL signal of Py-sp2c-CON was further amplified. As expected, the average ECL intensity of the Py-sp2c-CON/S2O82-/Bu4NPF6 system was about 2.03, 5.76, 24.31, and 190.33-fold higher than those of Py-sp2c-CON/S2O82-, Py-sp2c-COF/S2O82-, TFPPy/S2O82,- and imine-linked pyrene COF/S2O82- systems. Considering these advantages, the Py-sp2c-CON/S2O82-/Bu4NPF6 system was employed to prepare an ECL biosensor for microRNA-21 detection, which exhibited a broad linear response (100 aM to 1 nM) and a low detection limit (46 aM). Overall, this work demonstrated that sp2 carbon CONs can be directly used as a high-performance ECL emitter, thus expanding the application scope of COFs and opening a new horizon to develop new types of ECL emitters.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , MicroARNs , Técnicas Electroquímicas , Mediciones Luminiscentes
13.
Anal Chem ; 93(3): 1834-1841, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33389990

RESUMEN

Two-dimensional (2D) nanosheets have captured significant attention in constructing highly efficient electrochemiluminescent (ECL) materials because their high surface area and fully exposed postmodification sites could greatly increase the loading amount of luminophores. However, traditional 2D nanosheets as carriers exhibited natively poor electrical conductivity that restricted the electrochemical activation and the utilization ratio of ECL luminophores. Herein, to overcome this drawback, we utilized conductive 2D Ti3C2Tx MXene nanosheets as carriers to graft Ru(bpy)2(mcpbpy)2+ (bpy = 2,2'-bipyridine, mcpbpy = 4-(4'-methyl-[2,2'-bipyridin]-4-yl) butanoic acid) via a dehydrative condensation reaction and electrostatic interaction. Interestingly, Ru(bpy)2(mcpbpy)2+ played the role of "two birds with one stone", where Ru(bpy)2(mcpbpy)2+ acted as both an ECL luminophore and an intercalation molecule to achieve surface functionalization and delamination of multilayered Ti3C2Tx successfully, obtaining 2D ultrathin Ru-complex-grafted MXene nanosheets (Ru@MXene). Owing to the high load capacity and superior electrical conductivity of an ultrathin 2D MXene nanosheet, the obtained Ru@MXene exhibited a superb ECL emission. As expected, compared with the nonconductive 2D ultrathin metal-organic layers (MOLs) as carriers to graft Ru(bpy)2(mcpbpy)2+, the ECL intensity and ECL efficiency of Ru@MXene presented about 5-fold and 1.7-fold enhancement, respectively. Considering these advantages, Ru@MXene was applied to construct an ECL sensor for ultrasensitive determination of mucin 1 (MUC1), which displayed superb sensitivity (100 ag/mL to 10 ng/mL) with a low detection limit of 26.9 ag/mL. Overall, the conductivity-enhanced ECL based on Ru@MXene opened a fire-new chapter to develop splendent performance ECL emitters and shed new light on the application potential of conductive materials in the bioanalysis field.

14.
Anal Chem ; 93(15): 6239-6245, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33822576

RESUMEN

Metal-organic frameworks (MOFs) with porous structures exhibit favorable promise in synthesizing high-performance electrochemiluminescence (ECL) materials, yet their micropores and narrow channels not only restrict the loading capacity of ECL luminophores but also constrain the diffusion of coreactants, ions, and electrons. Hence, we developed a new and simple hydrothermal etching strategy for the fabrication of a hollow hierarchical MOF (HH-UiO-66-NH2) with a hierarchical-pore shell, which was employed as a carrier to graft Ru(bpy)2(mcpbpy)2+ (bpy = 2,2'-bipyridine, mcpbpy = 4-(4'-methyl-[2,2'-bipyridin]-4-yl) butanoic acid) onto the coordinatively unsaturated Zr6 nodes of HH-UiO-66-NH2, creating the Ru-complex-grafted HH-UiO-66-NH2 (abbreviated as HH-Ru-UiO-66-NH2). Impressively, the HH-Ru-UiO-66-NH2 presented brilliant ECL emission. On the one hand, the HH-UiO-66-NH2 with a hierarchical-pore shell and hollow cavity was conducive to immobilize the Ru(bpy)2(mcpbpy)2+ of large steric hindrance into the interior of the MOF, markedly improving the load number of luminophores. On the other hand, the hierarchical-pore shell of HH-UiO-66-NH2 permitted fast diffusion of coreactants, ions, and electrons that facilitated the excitation of more grafted luminophores and greatly enhanced the utilization ratio of ECL luminophores. Inspired by the superior ECL performance of HH-Ru-UiO-66-NH2, an ECL sensing platform was constructed on the basis of HH-Ru-UiO-66-NH2 as an ECL beacon combining catalytic hairpin assembly as a signal amplification strategy, showing excellent selectivity and high sensitivity for thrombin determination. This proof-of-concept work proposed a simple and feasible hydrothermal etching strategy to construct hollow hierarchical MOFs that served as carrier materials to immobilize ECL luminophores, providing significant inspiration to develop highly efficient ECL materials and endowing hollow hierarchical MOFs with ECL sensing applications for the first time.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Rutenio , Técnicas Electroquímicas , Mediciones Luminiscentes , Trombina
15.
Anal Chem ; 92(3): 2566-2572, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31922394

RESUMEN

We hereby described an electrochemiluminescence (ECL) biosensor for glutathione (GSH) based on a 3D DNA matrix with ordered binding sites and cavity structure that self-assembled from tetrahedral DNA blocks (TDBs). First, the alkyne-labeled TDBs were employed to build an alkyne-rich 3D matrix (C≡C-3DM) on the electrode surface. Then, the GSH-induced click chemistry was triggered as a signal switch to introduce the large amounts of N3-DNA decorated AuAg nanoclusters (N3-AuAg NCs) into C≡C-3DM for signal output. In particular, the presence of GSH could induce the formation of GSH-Cu(I) complex by the redox reaction between GSH and Cu(II), which could act as an initiator to link the N3-AuAg NCs with C≡C-3DM according to the Huisgen 1,3-dipolar cycloaddition reaction. By this way, numerous N3-AuAg NCs were orderly bonded to the 3D matrix to effectively reduce their agglomeration and inner filter effect, achieving a remarkable ECL enhancement. As a result, the proposed GSH biosensor showed a wide linear range from 5 to 200 µM with a low detection limit of 0.90 µM. In general, this work provided a rapid, highly efficient, and convenient signal amplification for small-molecule detection and broadened the application of TDBs in biosensing.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glutatión/análisis , Oro/química , Mediciones Luminiscentes , Nanopartículas del Metal/química , Plata/química , Química Clic , ADN/química , Tamaño de la Partícula , Propiedades de Superficie
16.
Anal Chem ; 92(22): 15120-15128, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33104338

RESUMEN

Considering the central challenge of the simple and efficient strategy to generate sensitive analysis technology, herein, we proposed a novel electrochemiluminescence (ECL) strategy based on target-induced self-enrichment via hydrophobic interaction to generate significant ECL enhancement for untrasensitive detection of clinical biomarkers with cardiac troponin I (cTnI) for early diagnosis of acute myocardial infarction (AMI) as a model. Typically, the first antibody of cTnI (fAb) was immobilized onto the as-prepared electrode surface with the titanium dioxide nanoflower and gold nanoclusters When there was target cTnI, it could be captured onto the electrode surface based on the specific antigen-antibody interaction to furtherly capture cholesterol-modified second antibody of cTnI to increase the hydrophobicity of the electrode surface, which could be employed for the self-enrichment of hydrophobic ECL luminophore, tris(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II), and coreactant, tripropylamine in the detection solution. Thus, an increased ECL emission could be achieved due to the increased concentration of ECL luminophore and coreactant, which was quantitatively related with the concentration of target cTnI. As expected, a higher sensitivity was obtained with a detection limit of 0.04 pg/mL based on simplest operations of the proposed strategy with target-induced self-enrichment via hydrophobic interaction. Importantly, this hydrophobic interaction-based ECL strategy could be easily expanded to the bioassay of various biomarkers, providing an efficient tool for early clinical diagnosis of AMI and some other diseases.


Asunto(s)
Técnicas Biosensibles/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Oro/química , Límite de Detección , Nanopartículas del Metal/química
17.
Anal Chem ; 92(4): 3380-3387, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31967795

RESUMEN

Here, we discovered that rigidifying the tetraphenylethylene (TPE)-based ligand H4TCBPE (H4TCBPE = 1,1,2,2-tetra(4-carboxylbiphenyl)ethylene) into Hf-based metal-organic framework (Hf-TCBPE) could lead to a stronger electrochemiluminescence (ECL) emission in comparison to H4TCBPE aggregates and H4TCBPE monomers. Due to the lack of close-packed TCBPE chromophores in Hf-TCBPE, which was required for aggregation-induced ECL (AI-ECL) enhancement, we defined this unprecedented phenomenon as matrix coordination-induced ECL (MCI-ECL) enhancement. The strong ECL intensity of Hf-TCBPE not only originated from the fixation of the TCBPE ligand between Hf6 clusters that restricted the intramolecular free motions of TCBPE and suppressed the nonradiative relaxation but also stemmed from the high porosity of Hf-TCBPE that rendered both internal and external TCBPE chromophores able to be excited. Considering the unique ECL characteristic of Hf-TCBPE, we combined the new ECL indicator of Hf-TCBPE as well as the phosphate-terminal ferrocene (Fc)-labeled hairpin DNA (Fc-HP3) aptamer together as a signal probe (Hf-TCBPE/Fc-HP3), which was employed to construct a novel "off-on" ECL sensor for ultrasensitive mucin 1 (MUC1) detection with the assistance of the exonuclease III (Exo III)-assisted recycling amplification strategy. As expected, the ECL sensor displayed a desirable linear response range from 1 fg/mL to 1 ng/mL and the detection limit down to 0.49 fg/mL. The MCI-ECL enhancement demonstrated by the Hf-TCBPE developed a new and promising strategy to design and synthesize high-performance metal-organic framework (MOF)-based ECL materials for constructing ultrasensitive ECL sensors.

18.
Chemistry ; 26(40): 8767-8773, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32060953

RESUMEN

The evident contradiction between high local-concentration-based substrate reactivity and free-diffusion-based high reaction efficiency remains one of the important challenges in chemistry. Herein, we propose an efficient aggregation-induced synergism through the hydrophobic-driven self-assembly of amphiphilic oligonucleotides to generate high local concentration whereas retaining high reaction efficiency through hydrophobic-based aggregation, which is important for constructing efficient DNA nanomachines for ultrasensitive applications. MicroRNA-155, used as a model, triggered strand displacement amplification of the DNA monomers on the periphery of the 3D DNA nanomachine and generated an amplified fluorescent response for its sensitive assay. The local concentration of substrates was increased by a factor of at least 9.0×105 through hydrophobic-interaction-based self-assembly in comparison with the traditional homogeneous reaction system, achieving high local-concentration-based reactivity and free-diffusion-based enhanced reaction efficiency. As expected, the aggregation-induced synergism by hydrophobic-driven self-assembly of amphiphilic oligonucleotides created excellent properties to generate a 3D DNA nanomachine with potential as an assay for microRNA-155 in cells. Most importantly, this approach can be easily expanded for the bioassay of various biomarkers, such as nucleotides, proteins, and cells, offering a new avenue for simple and efficient applications in bioanalysis and clinical diagnosis.


Asunto(s)
ADN/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Oligonucleótidos/química , Proteínas/genética , ADN/genética , Difusión , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas/química
19.
Anal Chem ; 91(21): 14125-14132, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31583883

RESUMEN

Herein, an ultrasensitive electrochemiluminescent (ECL) strategy was proposed based on a highly efficient dynamic DNA machine based on microRNA triggered free movement on the lipid bilayer interface. Typically, the lipid bilayer is constructed on the electrode surface modified with nafion@ECL luminophore and gold nanoparticles to immobilize the DNA walker labeled with cholesterol and hairpin nucleotides labeled with cholesterol and ferrocene (Fc), based on the cholesterol-lipid interaction. On this state, Fc was close to the ECL luminophore, performing a quenched ECL emission. In the presence of target microRNA 21, it could trigger the entropy beacon-based DNA amplification to convert microRNA to massive special DNA sequences, which could further hybridize with the blocking DNA on DNA walker to reactivate the DNA walker and thus trigger the DNA walker-based amplification to make Fc to be far from the ECL luminophore, performing a recovered ECL emission related with the concentration of microRNA 21. Compared with the conventional DNA walker immobilized on the interface via chemical bonds or physical adsorption, a higher reaction efficiency could be achieved due to the free movements of DNA walker and its substrates on the interface. As expected, satisfactory performances for the detection of microRNA 21 were achieved with a detection limit of 0.4 fM and quantitative estimation in cells. Furthermore, this dynamic DNA machine-based ECL strategy could be readily expanded for the detection of other biomarkers for clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN/química , Técnicas Electroquímicas , Membrana Dobles de Lípidos/química , Mediciones Luminiscentes , MicroARNs/química , Termodinámica , Electrodos , Células HeLa , Humanos , Células MCF-7 , Técnicas de Amplificación de Ácido Nucleico , Propiedades de Superficie , Células Tumorales Cultivadas
20.
Anal Chem ; 91(23): 14920-14926, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31674756

RESUMEN

Herein, a novel three-dimensional (3D) DNA nanomachine with high walking efficiency via free DNA walker movement on biomimetic lipid bilayers supported by hard silica@CdTe quantum dots (SiO2@CdTe) was constructed for ultrasensitive fluorescence detection of microRNA. The synthesized SiO2@CdTe nanoparticles were adopted as the fluorescence indicator and spherical carrier of lipid bilayers, and then the DNA substrates were anchored on lipid bilayers with biomimetic fluidity through the cholesterol-lipid interaction. Once target microRNA-141 interacted with the 3D DNA nanomachine to release cholesterol labeled arm (Chol-arm), the Chol-arm could generate a series of strand displacement reactions by moving freely on the lipid bilayers, resulting in the releasement of numerous quenchers from the SiO2@CdTe nanoparticles and inducing a strong fluorescence signal. Impressively, compared with traditional 3D DNA nanomachine conjugating DNA substrates on hard surfaces (such as gold or silica) with limited reactivity, the proposed biomimetic 3D DNA nanomachine not only immobilized DNA substrates rapidly and effectively but also kept it with a favorable fluidity, which significantly enhanced the walking efficiency. As expected, the biomimetic 3D DNA nanomachine for fluorescence detection of microRNA-141 exhibited an excellent performance with a detection limit of 0.21 pM and presented promising properties in cell lysate detection and intracellular imaging. Thus, the described biomimetic 3D DNA nanomachine provided a novel avenue for sensitive detection of biomolecules, which could be useful for bioanalysis and early clinical diagnoses of disease.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles , Compuestos de Cadmio/química , Ácidos Nucleicos Inmovilizados/química , Membrana Dobles de Lípidos/química , MicroARNs/análisis , Telurio/química , Línea Celular Tumoral , Colesterol/química , Femenino , Humanos , Límite de Detección , Células MCF-7 , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , MicroARNs/genética , MicroARNs/metabolismo , Microscopía Fluorescente , Nanotecnología/métodos , Puntos Cuánticos/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA