Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 61(38): 14973-14986, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36099644

RESUMEN

Cu-ion liquid-like copper sulfide materials have excellent thermoelectric properties, while their applications are limited by their high-temperature decomposition and electric field-driven Cu precipitation issues. In particular, high thermoelectric properties and electric field-driven degradation are difficult to reconcile because liquid-like Cu ions are dominant in low κ and high ZT, while they cause electric field-driven degradation. Here, we control the sintering current and duration time to remove the Cu1.8S phase, thereby inhibiting the thermal decomposition of the copper sulfide samples, and introduce the Fe element into the sample matrix to improve its resistance to electric field-driven degradation. We reveal that the kinetic process of Cu1.8S phase decomposition can be suppressed by increasing the relative density of the sample or covering a layer of dense coating/film on the surface of the sample. However, as long as the Cu1.8S phase is present in the sample, it cannot maintain thermal stability above 450 °C. Furthermore, we find that the Fe element forms a nanogrid spinodal decomposition structure in the sample matrix, which acts as a barrier wall to prevent the long-range diffusion of liquid-like Cu ions and inhibit the electric field-driven degradation. The freely movable liquid-like Cu ions in the grid maintain a strong scattering of phonons in a short range, so the sample possesses low κ and high ZT. Then, a strategy to unify the high thermal decomposition temperature, high threshold voltage, and high thermoelectric performance of copper sulfide thermoelectric materials is proposed: transforming the Cu1.8S phase and introducing a liquid-like Cu ion migration barrier.

2.
Rev Sci Instrum ; 90(7): 075108, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31370450

RESUMEN

A portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments is presented. It is based on a classical high-voltage discharge pulsed power system. A 95 kA peak current was delivered at a 65 kV discharge voltage, which generated a quasiuniform magnetic field of 12T in a Φ8 mm × 8 mm volume. A compact, sealed design was developed to avoid short-circuit breakdowns caused by an ambient low-pressure gas medium. Design improvements were made to the vacuum feedthrough, the transmission line, and the magnetic coil. The system worked well in a low vacuum environment for a laser plasma experiment using a gas target. But at intermediate ambient gas pressure, the ambient gas was ionized around the surface of the coil at first and then the ionized gas diffused inward and outward slowly, which affected the laser plasma image in the coil. Experiments and simulations indicated that the ambient gas was ionized by the induced electric field. We developed analytical models of the induced breakdown of the ambient gas to guide the experimental design of a gas target. The analysis can also be used in the experimental design of a solid target in an intense pulsed magnetic field of hundreds of tesla that the induced breakdown along solid's surface dominates the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA