Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203848

RESUMEN

A genome-wide association study (GWAS) of fat percentage (FPC) using 1,231,898 first lactation cows and 75,198 SNPs confirmed a previous result that a Chr14 region about 9.38 Mb in size (0.14-9.52 Mb) had significant inter-chromosome additive × additive (A×A) effects with all chromosomes and revealed many new such effects. This study divides this 9.38 Mb region into two sub-regions, Chr14a at 0.14-0.88 Mb (0.74 Mb in size) with 78% and Chr14b at 2.21-9.52 Mb (7.31 Mb in size) with 22% of the 2761 significant A×A effects. These two sub-regions were separated by a 1.3 Mb gap at 0.9-2.2 Mb without significant inter-chromosome A×A effects. The PPP1R16A-FOXH1-CYHR1-TONSL (PFCT) region of Chr14a (29 Kb in size) with four SNPs had the largest number of inter-chromosome A×A effects (1141 pairs) with all chromosomes, including the most significant inter-chromosome A×A effects. The SLC4A4-GC-NPFFR2 (SGN) region of Chr06, known to have highly significant additive effects for some production, fertility and health traits, specifically interacted with the PFCT region and a Chr14a region with CPSF1, ADCK5, SLC52A2, DGAT1, SMPD5 and PARP10 (CASDSP) known to have highly significant additive effects for milk production traits. The most significant effects were between an SNP in SGN and four SNPs in PFCT. The CASDSP region mostly interacted with the SGN region. In the Chr14b region, the 2.28-2.42 Mb region (138.46 Kb in size) lacking coding genes had the largest cluster of A×A effects, interacting with seventeen chromosomes. The results from this study provide high-confidence evidence towards the understanding of the genetic mechanism of FPC in Holstein cows.


Asunto(s)
Cromosomas Humanos Par 14 , Estudio de Asociación del Genoma Completo , Femenino , Humanos , Bovinos/genética , Animales , Fertilidad/genética , Lactancia , Fenotipo , FN-kappa B , Poli(ADP-Ribosa) Polimerasas , Proteínas Proto-Oncogénicas
2.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791589

RESUMEN

A genome-wide association study of resistance to retained placenta (RETP) using 632,212 Holstein cows and 74,747 SNPs identified 200 additive effects with p-values < 10-8 on thirteen chromosomes but no dominance effect was statistically significant. The regions of 87.61-88.74 Mb of Chr09 about 1.13 Mb in size had the most significant effect in LOC112448080 and other highly significant effects in CCDC170 and ESR1, and in or near RMND1 and AKAP12. Four non-ESR1 genes in this region were reported to be involved in ESR1 fusions in humans. Chr23 had the largest number of significant effects that peaked in SLC17A1, which was involved in urate metabolism and transport that could contribute to kidney disease. The PKHD1 gene contained seven significant effects and was downstream of another six significant effects. The ACOT13 gene also had a highly significant effect. Both PKHD1 and ACOT13 were associated with kidney disease. Another highly significant effect was upstream of BOLA-DQA2. The KITLG gene of Chr05 that acts in utero in germ cell and neural cell development, and hematopoiesis was upstream of a highly significant effect, contained a significant effect, and was between another two significant effects. The results of this study provided a new understanding of genetic factors underlying RETP in U.S. Holstein cows.


Asunto(s)
Enfermedades de los Bovinos , Estudio de Asociación del Genoma Completo , Retención de la Placenta , Polimorfismo de Nucleótido Simple , Bovinos , Animales , Femenino , Embarazo , Retención de la Placenta/genética , Retención de la Placenta/veterinaria , Enfermedades de los Bovinos/genética , Resistencia a la Enfermedad/genética , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108271

RESUMEN

A genome-wide association study (GWAS) of age at first calving (AFC) using 813,114 first lactation Holstein cows and 75,524 SNPs identified 2063 additive effects and 29 dominance effects with p-values < 10-8. Three chromosomes had highly significant additive effects in the regions of 7.86-8.12 Mb of Chr15, 27.07-27.48 Mb and 31.25-32.11 Mb of Chr19, and 26.92-32.60 Mb of Chr23. Two of the genes in those regions were reproductive hormone genes with known biological functions that should be relevant to AFC, the sex hormone binding globulin (SHBG) gene, and the progesterone receptor (PGR) gene. The most significant dominance effects were near or in EIF4B and AAAS of Chr05 and AFF1 and KLHL8 of Chr06. All dominance effects were positive overdominance effects where the heterozygous genotype had an advantage, and the homozygous recessive genotype of each SNP had a very negative dominance value. Results from this study provided new evidence and understanding about the genetic variants and genome regions affecting AFC in U.S. Holstein cows.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Animales , Femenino , Bovinos , Fertilidad/genética , Leche , Lactancia/genética , Genotipo , Polimorfismo de Nucleótido Simple
4.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445674

RESUMEN

A genome-wide association study (GWAS) of the daughter pregnancy rate (DPR), cow conception rate (CCR), and heifer conception rate (HCR) using 1,001,374-1,194,736 first-lactation Holstein cows and 75,140-75,295 SNPs identified 7567, 3798, and 726 additive effects, as well as 22, 27, and 25 dominance effects for DPR, CCR, and HCR, respectively, with log10(1/p) > 8. Most of these effects were new effects, and some new effects were in or near genes known to affect reproduction including GNRHR, SHBG, and ESR1, and a gene cluster of pregnancy-associated glycoproteins. The confirmed effects included those in or near the SLC4A4-GC-NPFFR2 and AFF1 regions of Chr06 and the KALRN region of Chr01. Eleven SNPs in the CEBPG-PEPD-CHST8 region of Chr18, the AFF1-KLHL8 region of Chr06, and the CCDC14-KALRN region of Chr01 with sharply negative allelic effects and dominance values for the recessive homozygous genotypes were recommended for heifer culling. Two SNPs in and near the AGMO region of Chr04 that were sharply negative for HCR and age at first calving, but slightly positive for the yield traits could also be considered for heifer culling. The results from this study provided new evidence and understanding about the genetic variants and genome regions affecting the three fertility traits in U.S. Holstein cows.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Embarazo , Bovinos/genética , Animales , Femenino , Fertilidad/genética , Reproducción/genética , Fertilización , Lactancia
5.
Genet Sel Evol ; 53(1): 78, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620094

RESUMEN

BACKGROUND: Genomic selection using single nucleotide polymorphism (SNP) markers has been widely used for genetic improvement of livestock, but most current methods of genomic selection are based on SNP models. In this study, we investigated the prediction accuracies of haplotype models based on fixed chromosome distances and gene boundaries compared to those of SNP models for genomic prediction of phenotypic values. We also examined the reasons for the successes and failures of haplotype genomic prediction. METHODS: We analyzed a swine population of 3195 Duroc boars with records on eight traits: body judging score (BJS), teat number (TN), age (AGW), loin muscle area (LMA), loin muscle depth (LMD) and back fat thickness (BF) at 100 kg live weight, and average daily gain (ADG) and feed conversion rate (FCR) from 30 to100 kg live weight. Ten-fold validation was used to evaluate the prediction accuracy of each SNP model and each multi-allelic haplotype model based on 488,124 autosomal SNPs from low-coverage sequencing. Haplotype blocks were defined using fixed chromosome distances or gene boundaries. RESULTS: Compared to the best SNP model, the accuracy of predicting phenotypic values using a haplotype model was greater by 7.4% for BJS, 7.1% for AGW, 6.6% for ADG, 4.9% for FCR, 2.7% for LMA, 1.9% for LMD, 1.4% for BF, and 0.3% for TN. The use of gene-based haplotype blocks resulted in the best prediction accuracy for LMA, LMD, and TN. Compared to estimates of SNP additive heritability, estimates of haplotype epistasis heritability were strongly correlated with the increase in prediction accuracy by haplotype models. The increase in prediction accuracy was largest for BJS, AGW, ADG, and FCR, which also had the largest estimates of haplotype epistasis heritability, 24.4% for BJS, 14.3% for AGW, 14.5% for ADG, and 17.7% for FCR. SNP and haplotype heritability profiles across the genome identified several genes with large genetic contributions to phenotypes: NUDT3 for LMA, LMD and BF, VRTN for TN, COL5A2 for BJS, BSND for ADG, and CARTPT for FCR. CONCLUSIONS: Haplotype prediction models improved the accuracy for genomic prediction of phenotypes in Duroc pigs. For some traits, the best prediction accuracy was obtained with haplotypes defined using gene regions, which provides evidence that functional genomic information can improve the accuracy of haplotype genomic prediction for certain traits.


Asunto(s)
Genoma , Genómica , Animales , Cromosomas/genética , Haplotipos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Porcinos/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38974678

RESUMEN

The U.S. Holstein cattle have unprecedentedly large samples for genomic evaluation with genotypes of Single Nucleotide Polymorphism (SNP) markers and phenotypic observations of dairy quantitative traits. Such large samples provided unprecedented opportunities for the discovery of genetic variants and mechanisms affecting quantitative traits in Holstein cattle. Recent studies using the Holstein large samples on finding genetic variants affecting quantitative traits included a fat percentage study and two studies on reproductive traits. The fat percentage study confirmed that a chromosome region interacted with all chromosomes and the reproductive studies detected sharply negative homozygous recessive genotypes that were recommended for heifer culling. These novel findings provided examples showing the power of large-sample genomic mining for quantitative traits.

7.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927042

RESUMEN

Sheep and goat may become carriers of some zoonotic diseases. They are important livestock and experimental model animals for human beings. The fast and accurate identification of genetic materials originating from sheep and goat can prevent and inhibit the spread of some zoonotic diseases, monitor market product quality, and maintain the stability of animal husbandry and food industries. This study proposed a methodology for identifying sheep and goat common specific sites from a genome-wide perspective. A total of 150 specific sites were selected from three data sources, including the coding sequences of single copy genes from nine species (sheep, goat, cow, pig, dog, horse, human, mouse, and chicken), the dbSNPs for these species, and human 100-way alignment data. These 150 sites exhibited low intraspecific heterogeneity in the resequencing data of 1450 samples from five species (sheep, goat, cow, pig, and chicken) and high interspecific divergence in the human 100-way alignment data after quality control. The results were proven to be reliable at the data level. Using the process proposed in this study, specific sites of other species can be screened, and genome-level species identification can be performed using the screened sites.


Asunto(s)
Cabras , Animales , Cabras/genética , Ovinos/genética , Humanos , Sitios Genéticos , Genoma/genética , Polimorfismo de Nucleótido Simple/genética , Bovinos/genética , Porcinos/genética , Especificidad de la Especie , Ratones
8.
Biomolecules ; 13(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37892160

RESUMEN

The accuracy of predicting seven human phenotypes of 3657-7564 individuals using global epistasis effects was evaluated and compared to the accuracy of haplotype genomic prediction using 380,705 SNPs and 10-fold cross-validation studies. The seven human phenotypes were the normality transformed high density lipoproteins (HDL), low density lipoproteins (LDL), total cholesterol (TC), triglycerides (TG), weight (WT), and the original phenotypic observations of height (HTo) and body mass index (BMIo). Fourth-order epistasis effects virtually had no contribution to the phenotypic variances, and third-order epistasis effects did not affect the prediction accuracy. Without haplotype effects in the prediction model, pairwise epistasis effects improved the prediction accuracy over the SNP models for six traits, with accuracy increases of 2.41%, 3.85%, 0.70%, 0.97%, 0.62% and 0.93% for HDL, LDL, TC, HTo, WT and BMIo respectively. However, none of the epistasis models had higher prediction accuracy than the haplotype models we previously reported. The epistasis model for TG decreased the prediction accuracy by 2.35% relative to the accuracy of the SNP model. The integrated models with epistasis and haplotype effects had slightly higher prediction accuracy than the haplotype models for two traits, HDL and BMIo. These two traits were the only traits where additive × dominance effects increased the prediction accuracy. These results indicated that haplotype effects containing local high-order epistasis effects had a tendency to be more important than global pairwise epistasis effects for the seven human phenotypes, and that the genetic mechanism of HDL and BMIo was more complex than that of the other traits.


Asunto(s)
Epistasis Genética , Genómica , Humanos , Haplotipos , Fenotipo , Triglicéridos , Polimorfismo de Nucleótido Simple/genética
9.
Cell Biosci ; 13(1): 169, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705071

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic hepatic disease and results in non-alcoholic steatohepatitis (NASH), which progresses to fibrosis and cirrhosis. Although the Leptin deficient rodent models are widely used in study of metabolic syndrome and obesity, they fail to develop liver injuries as in patients. METHODS: Due to the high similarity with humans, we generated Leptin-deficient (Leptin-/-) pigs to investigate the mechanisms and clinical trials of obesity and NAFLD caused by Leptin. RESULTS: The Leptin-/- pigs showed increased body fat and significant insulin resistance at the age of 12 months. Moreover, Leptin-/- pig developed fatty liver, non-alcoholic steatohepatitis and hepatic fibrosis with age. Absence of Leptin in pig reduced the phosphorylation of JAK2-STAT3 and AMPK. The inactivation of JAK2-STAT3 and AMPK enhanced fatty acid ß-oxidation and leaded to mitochondrial autophagy respectively, and both contributed to increased oxidative stress in liver cells. In contrast with Leptin-/- pig, although Leptin deletion in rat liver inhibited JAK2-STAT3 phosphorylation, the activation of AMPK pathway might prevent liver injury. Therefore, ß-oxidation, mitochondrial autophagy and hepatic fibrosis did not occurred in Leptin-/- rat livers. CONCLUSIONS: The Leptin-deficient pigs presents an ideal model to illustrate the full spectrum of human NAFLD. The activity of AMPK signaling pathway suggests a potential target to develop new strategy for the diagnosis and treatment of NAFLD.

10.
Front Genet ; 13: 922369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313431

RESUMEN

The rapid growth in genomic selection data provides unprecedented opportunities to discover and utilize complex genetic effects for improving phenotypes, but the methodology is lacking. Epistasis effects are interaction effects, and haplotype effects may contain local high-order epistasis effects. Multifactorial methods with SNP, haplotype, and epistasis effects up to the third-order are developed to investigate the contributions of global low-order and local high-order epistasis effects to the phenotypic variance and the accuracy of genomic prediction of quantitative traits. These methods include genomic best linear unbiased prediction (GBLUP) with associated reliability for individuals with and without phenotypic observations, including a computationally efficient GBLUP method for large validation populations, and genomic restricted maximum estimation (GREML) of the variance and associated heritability using a combination of EM-REML and AI-REML iterative algorithms. These methods were developed for two models, Model-I with 10 effect types and Model-II with 13 effect types, including intra- and inter-chromosome pairwise epistasis effects that replace the pairwise epistasis effects of Model-I. GREML heritability estimate and GBLUP effect estimate for each effect of an effect type are derived, except for third-order epistasis effects. The multifactorial models evaluate each effect type based on the phenotypic values adjusted for the remaining effect types and can use more effect types than separate models of SNP, haplotype, and epistasis effects, providing a methodology capability to evaluate the contributions of complex genetic effects to the phenotypic variance and prediction accuracy and to discover and utilize complex genetic effects for improving the phenotypes of quantitative traits.

11.
Front Genet ; 13: 1017490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386803

RESUMEN

The impact of genomic epistasis effects on the accuracy of predicting the phenotypic values of residual feed intake (RFI) in U.S. Holstein cows was evaluated using 6215 Holstein cows and 78,964 SNPs. Two SNP models and seven epistasis models were initially evaluated. Heritability estimates and the accuracy of predicting the RFI phenotypic values from 10-fold cross-validation studies identified the model with SNP additive effects and additive × additive (A×A) epistasis effects (A + A×A model) to be the best prediction model. Under the A + A×A model, additive heritability was 0.141, and A×A heritability was 0.263 that consisted of 0.260 inter-chromosome A×A heritability and 0.003 intra-chromosome A×A heritability, showing that inter-chromosome A×A effects were responsible for the accuracy increases due to A×A. Under the SNP additive model (A-only model), the additive heritability was 0.171. In the 10 validation populations, the average accuracy for predicting the RFI phenotypic values was 0.246 (with range 0.197-0.333) under A + A×A model and was 0.231 (with range of 0.188-0.319) under the A-only model. The average increase in the accuracy of predicting the RFI phenotypic values by the A + A×A model over the A-only model was 6.49% (with range of 3.02-14.29%). Results in this study showed A×A epistasis effects had a positive impact on the accuracy of predicting the RFI phenotypic values when combined with additive effects in the prediction model.

12.
Genes (Basel) ; 12(7)2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34356105

RESUMEN

Epistasis is widely considered important, but epistasis studies lag those of SNP effects. Genome-wide association study (GWAS) using 76,109 SNPs and 294,079 first-lactation Holstein cows was conducted for testing pairwise epistasis effects of five production traits and three fertility traits: milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FPC), protein percentage (PPC), and daughter pregnancy rate (DPR). Among the top 50,000 pairwise epistasis effects of each trait, the five production traits had large chromosome regions with intra-chromosome epistasis. The percentage of inter-chromosome epistasis effects was 1.9% for FPC, 1.6% for PPC, 10.6% for MY, 29.9% for FY, 39.3% for PY, and 84.2% for DPR. Of the 50,000 epistasis effects, the number of significant effects with log10(1/p) ≥ 12 was 50,000 for FPC and PPC, and 10,508, 4763, 4637 and 1 for MY, FY, PY and DPR, respectively, and A × A effects were the most frequent epistasis effects for all traits. Majority of the inter-chromosome epistasis effects of FPC across all chromosomes involved a Chr14 region containing DGAT1, indicating a potential regulatory role of this Chr14 region affecting all chromosomes for FPC. The epistasis results provided new understanding about the genetic mechanism underlying quantitative traits in Holstein cattle.


Asunto(s)
Epistasis Genética/genética , Regulación de la Expresión Génica/genética , Leche/metabolismo , Animales , Bovinos , Femenino , Fertilidad/genética , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Lactancia/genética , Leche/química , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Embarazo , Índice de Embarazo , Transcriptoma/genética
13.
Front Genet ; 11: 588907, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324447

RESUMEN

Genomic prediction using multi-allelic haplotype models improved the prediction accuracy for all seven human phenotypes, the normality transformed high density lipoproteins, low density lipoproteins, total cholesterol, triglycerides, weight, and the original height and body mass index without normality transformation. Eight SNP sets with 40,941-380,705 SNPs were evaluated. The increase in prediction accuracy due to haplotypes was 1.86-8.12%. Haplotypes using fixed chromosome distances had the best prediction accuracy for four phenotypes, fixed number of SNPs for two phenotypes, and gene-based haplotypes for high density lipoproteins and height (tied for best). Haplotypes of coding genes were more accurate than haplotypes of all autosome genes that included both coding and noncoding genes for triglycerides and weight, and nearly the same as haplotypes of all autosome genes for the other phenotypes. Haplotypes of noncoding genes (mostly lncRNAs) only improved the prediction accuracy over the SNP models for high density lipoproteins, total cholesterol, and height. ChIP-seq haplotypes had better prediction accuracy than gene-based haplotypes for total cholesterol, body mass index and low density lipoproteins. The accuracy of ChIP-seq haplotypes was most striking for low density lipoproteins, where all four haplotype models with ChIP-seq haplotypes had similarly high prediction accuracy over the best prediction model with gene-based haplotypes. Haplotype epistasis was shown to be the reason for the increased accuracy due to haplotypes. Low density lipoproteins had the largest haplotype epistasis heritability that explained 14.70% of the phenotypic variance and was 31.27% of the SNP additive heritability, and the largest increase in prediction accuracy relative to the best SNP model (8.12%). Relative to the SNP additive heritability of the same regions, noncoding genes had the highest haplotype epistasis heritability, followed by coding genes and ChIP-seq for the seven phenotypes. SNP and haplotype heritability profiles showed that the integration of SNP and haplotype additive values compensated the weakness of haplotypes in estimating SNP heritabilities for four phenotypes, whereas models with haplotype additive values fully accounted for SNP additive values for three phenotypes. These results showed that haplotype analysis can be a method to utilize functional and structural genomic information to improve the accuracy of genomic prediction.

14.
Front Genet ; 11: 282, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318093

RESUMEN

Haplotype prediction models open many possibilities to improve the accuracy of genomic selection but require more data processing and computing time than single-SNP prediction models. To facilitate haplotype analysis for genomic prediction and estimation using structural and functional genomic information, we developed a computing pipeline to implement haplotype analysis with capabilities for preparation of input data for haplotype analysis, genomic prediction and estimation using GVCHAP, and analysis of GVCHAP results. Data preparation includes utility programs for haplotype imputing; defining haplotype blocks by a fixed number of SNPs, a fixed distance in base pairs per block, or user defined block lengths based on structural or functional genomic information or a mixture of both types of information; and defining haplotype genotypes within each haplotype block. GVCHAP is the main program for genomic prediction and estimation, calculates GREML (genomic restricted maximum likelihood) estimates of variance components and heritabilities, and calculates GBLUP (genomic best linear unbiased prediction) for additive and dominance values of single SNPs as well as additive values of haplotypes with reliability estimates for training and validation populations. A two-step strategy and a method of multi-node processing are implemented to remove the computing bottleneck due to the creation of genomic relationship matrices for large samples. The analysis of GVCHAP results includes calculation of observed prediction accuracies from validation studies and preparation of input files for graphical visualization of heritability estimates of haplotype blocks as well as estimates of SNP effects and heritabilities. The entire pipeline provides an efficient and versatile computing tool for identifying the most accurate haplotype model among many candidate haplotype models utilizing structural and functional genomic information for genomic selection.

15.
Front Genet ; 10: 183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915106

RESUMEN

Using small sets of ancestry informative markers (AIMs) constitutes a cost-effective method to accurately estimate the ancestry proportions of individuals. This study aimed to generate a small and effective number of AIMs from ∼60 K single nucleotide polymorphism (SNP) data of porcine and estimate three ancestry proportions [East China pig (ECHP), South China pig (SCHP), and European commercial pig (EUCP)] from Asian breeds and European domestic breeds. A total of 186 samples of 10 pure breeds were divided into three groups: ECHP, SCHP, and EUCP. Using these samples and a one-vs.-rest SVM classifier, we found that using only seven AIMs could completely separate the three groups. Subsequently, we utilized supervised ADMIXTURE to calculate ancestry proportions and found that the 129 AIMs performed well on ancestry estimates when pseudo admixed individuals were used. Furthermore, another 969 samples of 61 populations were applied to evaluate the performance of the 129 AIMs. We also observed that the 129 AIMs were highly correlated with estimates using ∼60 K SNP data for three ancestry components: ECHP (Pearson correlation coefficient (r) = 0.94), SCHP (r = 0.94), and EUCP (r = 0.99). Our results provided an example of using a small number of pig AIMs for classifications and estimating ancestry proportions with high accuracy and in a cost-effective manner.

16.
Virology ; 531: 19-30, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30852268

RESUMEN

In this study, using a dual-functional, piggyBac transposon-based system, we developed a method to systematically decipher the host genes that may be associated with porcine reproductive and respiratory syndrome virus (PRRSV) infection. A Marc145 cell library, which was randomly mutated by transfecting piggyBac plasmids, was challenged with PRRSV. The surviving cell clones were subjected to inverse PCR and high-throughput sequencing to map the integration sites of the transposon. Detailed annotation of the genes flanking the integration sites allowed us to generate a ranked list of candidate genes. Among the predicted genes with a high priority, four genes, CDK17, RNF168, BCL2L15, and TRIM33, were strongly correlated with PRRSV infection in both Marc145 cells and porcine primary alveolar macrophages. This study not only assists in identifying the genes essential for PRRSV infection but also confirms the possibility of using the piggyBac system to study other virus-host genetic interactions in a high-throughput manner.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Animales , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Elementos Transponibles de ADN , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Plásmidos/genética , Plásmidos/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA