Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Phytoremediation ; 24(6): 580-589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34369831

RESUMEN

Broussonetia papyrifera, is a promising fast-growing woody plant for the phytoremediation of heavy metal(loid) (HM)-contaminated soil. In this study, a greenhouse experiment was conducted to explore the tolerance capacities of B. papyrifera and its phytoremediation potential in the HM-contaminated soil. The results indicated that B. papyrifera could effectively decrease malondialdehyde (MDA) content by enhancing the antioxidant enzyme activities along with the cultivation in the HM-contaminated soil. Significant (p < 0.05) negative relationships were found between MDA content and superoxide dismutase (r = -0.620) and catalase activities (r = -0.702) in B. papyrifera leaves. Fourier Transform Infrared Spectroscopy analysis indicated that the main functional groups in B. papyrifera roots were slightly influenced by HMs, and organic acids, carbohydrates, protein, and amino acids might bind with HMs in plant roots to alleviate the adverse effect of HMs on plants growth. Meanwhile, B. papyrifera had great potential used for the phytoextraction of Cd and Zn in HM-contaminated soil. The maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, respectively. These observations suggested that B. papyrifera has large biomass and high tolerance to HMs, which can be regarded as a promising plant for the eco-remediation of HM-contaminated sites.Novelty statement In this study, a fast-growing woody plant, Broussonetia papyrifera, was used for heavy metal(loid) (HM)-contaminated soil remediation. We found that B. papyrifera can effectively alleviate the adverse effect of HMs on plant growth by enhancing the antioxidant enzyme activities in leaves and binding HMs with organic acids, carbohydrates, protein, and amino acids in roots. Furthermore, the maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, which suggested that B. papyrifera might be regarded as a promising woody plant used for the phytoextraction of Cd and Zn in the contaminated soil.


Asunto(s)
Broussonetia , Metales Pesados , Contaminantes del Suelo , Aminoácidos/análisis , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Biodegradación Ambiental , Broussonetia/metabolismo , Cadmio/metabolismo , Carbohidratos/análisis , Metales Pesados/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo
2.
J Environ Sci (China) ; 111: 141-152, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949344

RESUMEN

The scientific application of stabilized materials has been considered an effective method for the in situ remediation of Cd-contaminated soil. This study aimed to investigate the persistence of the effect of a combined amendment of limestone and sepiolite (LS) on soil Cd availability and accumulation in rice grown in a mildly Cd-contaminated paddy field (0.45 mg/kg of Cd) over three consecutive rice seasons. 1125-4500 kg/ha of LS was applied to the soil before the first rice planting season and 562.5-2250 kg/ha of LS was supplemented before the third rice planting season. The application of LS (1125-4500 kg/ha) increased the soil pH by 0.44-1.09, 0.18-0.53, and 0.42-0.68 in the first, second, and third season, respectively, and decreased the soil acid-extractable Cd content by 18.2-36.4%, 17.7-33.5%, and 9.6-17.6%. LS application significantly decreased the Cd contents in the rice tissues. The application of 4500 kg/ha of LS decreased the Cd content in brown rice to below the National Food Limit Standard of 0.2 mg/kg (GB 2762-2017) in the three consecutive rice seasons. However, the effect of LS on the soil-rice system was significantly weakened in the third season. The supplementary application of 562.5-2250 kg/ha of LS further decreased the Cd content in brown rice by 26.1-56.5% and decreased the health risk index by 23.7-43.8%. Therefore, it was recommended to apply 4500 kg/ha of LS in the first season and to supplement 2250 kg/ha of LS in the third season to effectively guarantee the clean production of rice in three consecutive rice seasons.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Estaciones del Año , Suelo , Contaminantes del Suelo/análisis
3.
Ecotoxicol Environ Saf ; 203: 111012, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32684522

RESUMEN

Planting sweet potato (Ipomoea batatas (L.) Lam.) instead of rice in the area contaminated with heavy metals is one of the measures to ensure people's health and agricultural economy. Therefore, it is important to screen the low accumulation cultivars of sweet potato and to find out the concentration rule of cadmium (Cd) and lead (Pb) in edible parts along with the associated health risks to humans. A field experiment was performed with fourteen of three main types (starch, purple, and edible-type) of sweet potato cultivars grown on farmland polluted with Cd and Pb in eastern Hunan Province, China. The Cd and Pb concentrations in the sweet potato tissues as well as the yield were measured. The yield of the shoot and tuberous root of the fourteen sweet potato cultivars ranged from 14.59 to 68.57 and 26.35-50.76 t ha-1 with mean values of 33.09 and 33.46 t ha-1, respectively. Compared with purple and edible-type cultivars, the starch-type cultivar had lower Cd and Pb concentrations in the flesh, but higher in the shoot. The Cd and Pb concentrations in the flesh of cultivars Shangshu 19, Sushu 24, Yushu 98, and Xiangshu 98 were lower than MCL provided in Chinese National Food Safety Standards GB2762-2017. Based on the hazard index (HI), the consumption of sweet potato flesh is lower health risk, while shoots pose a greater health risk to local people and Cd is the main cause of the risk. As a result, sweet potato cultivars Shangshu 19, Sushu 24, Yushu 98 and Xiangshu 98 can be plant in serve Cd and Pb contaminated soils with the advantages of easy cultivation, high yield and economic benefits without stopping agricultural production.


Asunto(s)
Cadmio/análisis , Exposición Dietética/análisis , Ipomoea batatas/química , Plomo/análisis , Contaminantes del Suelo/análisis , China , Productos Agrícolas/química , Productos Agrícolas/genética , Exposición Dietética/normas , Inocuidad de los Alimentos , Humanos , Ipomoea batatas/genética , Medición de Riesgo
4.
Ecotoxicol Environ Saf ; 195: 110492, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32203777

RESUMEN

A pot experiment was conducted to evaluate the effects of combined application of cadmium (Cd)-resistant bacteria (J) and calcium carbonate + sepiolite (G) on both Cd bioavailability in contaminated paddy soil and on Cd accumulation in rice plants. Adding the mixture (J + G) to the soils significantly increased soil pH, decreased extractable Cd contents, and increased Fe/Mn-oxide Cd and organic-bound Cd contents. The applying of J + G, J and G decreased Cd contents in various rice tissues (roots, stems and leaves, husks, and brown rice grains) to different degrees. Compared with those of the CK, Cd contents decreased by 17.8%-53.3% in the roots, 12.3%-27.4% in the stems and leaves, 25.4%-44.6% in the husks, and 28.8%-55.7% in the brown rice grains for the application of J + G; Cd contents decreased by 8.2%-28.5% in the roots, 11.5%-32.0% in the husks, and 27.8%-45.9% in the brown rice grains for the application of J; Cd contents decreased by 12.9%-26.5% in the roots, in the stems and leaves decreased by 4.6%-34.1% in the stems and leaves, 60.2%-79.7% in the husks, and 35.7%-47.6% in the brown rice grains for the application of G. The alone application of bacteria (J) could reduce the bioavailability of Cd in soil and the contents of Cd in brown rice grains to some extent. Moreover, when the bacteria were applied in combination with mineral (J + G), it was a more effective method than the alone application of J or G to reduce the soil Cd bioavailability. Under all the tested conditions, applications of J4+G4 (320 mL kg-1 of J + 8 g kg-1 of G) resulted in the greatest reduction in Cd contents in brown rice grains. Overall, the results indicated that the combination of Cd-resistant bacteria and mineral material could effectively reduce Cd bioavailability in paddy soils and inhibit Cd accumulation in brown rice grains.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Cadmio/análisis , Carbonato de Calcio/química , Silicatos de Magnesio/química , Oryza/química , Contaminantes del Suelo/análisis , Adaptación Fisiológica/efectos de los fármacos , Disponibilidad Biológica , Grano Comestible/química , Hojas de la Planta/química , Raíces de Plantas/química , Suelo/química
5.
Ecotoxicol Environ Saf ; 171: 451-459, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30639871

RESUMEN

Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.


Asunto(s)
Arsénico/análisis , Cadmio/análisis , Oryza/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , China , Grano Comestible/efectos de los fármacos , Grano Comestible/genética , Concentración de Iones de Hidrógeno , Oryza/efectos de los fármacos , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier , Zeolitas/química
6.
Ecotoxicol Environ Saf ; 152: 91-97, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29407786

RESUMEN

Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4µg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.


Asunto(s)
Cadmio/análisis , Hierro/metabolismo , Oryza/efectos de los fármacos , Contaminantes del Suelo/análisis , Transporte Biológico , Cadmio/metabolismo , Humanos , Oryza/química , Oryza/crecimiento & desarrollo , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Contaminantes del Suelo/metabolismo
7.
Bull Environ Contam Toxicol ; 99(5): 601-606, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28889221

RESUMEN

A soil spiking experiment at two Cd levels (0.72 and 5.20 mg kg-1) was conducted to investigate the effects of rapeseed cake (RSC) at application rates of 0%, 0.75%, 1.5%, and 3.0% (w/w) on iron plaque formation and Cd uptake by rice (Oryza sativa L.) seedlings. The use of RSC did result in a sharp decrease in soil bioavailability of Cd and a significant increase in rice growth, soil pH and organic matter. Application of RSC increased the amount of iron plaque formation and this effectively inhibited the uptake and translocation of Cd into the rice seedlings. RSC was an effective organic additive for increasing rice growth and reducing Cd uptake by rice plant, simultaneously. These results could be used as a reference for the safety use of Cd polluted paddy soil.


Asunto(s)
Cadmio/metabolismo , Oryza/fisiología , Contaminantes del Suelo/metabolismo , Brassica rapa , Cadmio/análisis , Hierro/metabolismo , Oryza/crecimiento & desarrollo , Plantones/efectos de los fármacos , Suelo , Contaminantes del Suelo/análisis
8.
Ecotoxicol Environ Saf ; 130: 163-70, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27107177

RESUMEN

In order to study the persistence of a combined amendment (LS, limestone+sepiolite) for remedying paddy soil polluted with the heavy metals Pb and Cd, a three-year in-situ experiment was conducted in a paddy soil near a mining area in southern Hunan, China. LS was applied at rates of 0, 2, 4, and 8g/kg (w/w); rice was subsequently planted for the three consecutive years of 2012 (first season), 2013 (second season), and 2014 (third season). Experimental results indicated that LS significantly increased soil pH values for all three seasons, and the enhancement ranked as follows: first season>second season>third season. Under the experimental conditions, the effect of LS on decreasing exchangeable concentrations of soil Pb and Cd was as follows: first season (97.6-99.8% for Pb and 88.3-98.9% for Cd)>second season (80.7-97.7% for Pb and 28.3-88.0% for Cd)>third season (32.6-97.7% for Pb and 8.3-71.4% for Cd); the effect of LS on reducing Pb concentrations in brown rice was: first season (73.5-81.2%)>third season (29.6-68.1%)>second season (0-9.7%), and that for reducing Cd concentrations in brown rice was third season (72.7-81.0%)>first season (56.1-66.8%)>second season (20.9-32.3%). For all three seasons, the effect of LS on reducing Cd content in brown rice was better than that for Pb. The highest translocation factors for Pb and Cd were from rice straw to husk, implying that the husk of rice plants was the main organ in which heavy metals accumulated. The effect of LS for decreasing soil exchangeable Cd content was relatively persistent, but that for Pb gradually decreased with time, implying that LS was more suitable for the long-term remediation of Cd-polluted soil than Pb-polluted soil.


Asunto(s)
Biodegradación Ambiental , Cadmio/aislamiento & purificación , Carbonato de Calcio/química , Plomo/aislamiento & purificación , Silicatos de Magnesio/química , Oryza/química , Contaminantes del Suelo/aislamiento & purificación , Cadmio/análisis , China , Plomo/análisis , Estaciones del Año , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química
9.
J Environ Biol ; 37(1): 163-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26930875

RESUMEN

In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.


Asunto(s)
Biodegradación Ambiental , Cadmio/metabolismo , Carbonato de Calcio/farmacología , Nicotiana/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Calcio/química , Calcio/metabolismo , Magnesio/química , Magnesio/metabolismo , Fósforo/química , Fósforo/metabolismo , Potasio/química , Potasio/metabolismo , Nicotiana/efectos de los fármacos
10.
Ecotoxicol Environ Saf ; 101: 226-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24507150

RESUMEN

Stabilization of heavy metals in situ was investigated. Two combined amendments (LS, limestone+sepiolite; HZ, hydroxyhistidine+zeolite) were applied at ratios of 0.2%, 0.4%, and 0.8% (w/w) to paddy soil with multi-metal (Pb, Cd, Cu, and Zn) contamination. The effects of these two combined amendments on heavy metal bioavailability in soil, and on uptake and accumulation of heavy metals in rice plants were investigated. Application of LS and HZ significantly increased soil pH values and cation exchange capacity contents, and resulted in a reduction in exchangeable fraction of metals and in extract metal concentrations of amended soils through toxicity characteristic leaching procedure (TCLP). LS and HZ obviously inhibited uptake and accumulation of Pb, Cd, Cu, and Zn in rice plants. Compared with the control soil, concentrations of Pb, Cd, Cu, and Zn in brown rice were decreased by 10.6-31.8%, 16.7-25.5%, 11.5-22.1%, and 11.7-16.3%, respectively, as a result of 0.2% to 0.8% addition of LS, and decreased by 5.1-40.8%, 16.7-20.0%, 8.1-16.2%, and 13.3-21.7%, respectively, as a result of 0.2-0.8% addition of HZ. Significant positive linear correlations were found between heavy metal concentrations in TCLP extracts and those in rice tissues except for Pb. Extracting heavy metals with TCLP was a more suitable method for estimating heavy metal bioavailability concentrations of amended soil than exchangeable fraction of heavy metals, because the latter underestimated heavy metal bioavailability. These results demonstrate that LS and HZ could be effective in reducing heavy metal bioavailability and accumulation in rice grown on multi-metal-contaminated soils.


Asunto(s)
Metales Pesados/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Metales Pesados/química , Oryza/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química
11.
Huan Jing Ke Xue ; 45(3): 1793-1802, 2024 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-38471890

RESUMEN

A rice pot experiment was conducted to identify the effect of silica fertilizer prepared from husk ash on the soil bioavailability of cadmium (Cd) and arsenic (As), enzyme activities, microbial community structure, and heavy metal content in brown rice at different growth stages. The results showed that the application of 0.1%-1.0% silica fertilizer-husk ash increased the pH value of soil by 0.04-0.24 units and the content of soil available silicon by 44.2%-97.5%. It also decreased the content of available Cd and available As by 16.2%-21.4% and 16.0%-24.9%, respectively. With the increase in application amount, the soil enzyme activities increased at all growth stages, and the sucrase activity and the dehydrogenase activity significantly increased by 6.3%-145.7% and 6.7%-224.1%, respectively. The analysis of the soil microbial community composition structure at mature stages showed that the application of silica fertilizer-husk ash had no effect on microbial α-diversity, but it had a significant effect on microbial ß-diversity and then promoted microbial growth and maintained the stability of the community structure. With the increase in application amount, the contents of Cd in brown rice decreased by 29.3%-89.7%, and the contents of total As and inorganic As in brown rice decreased by 7.8%-42.3% and 17.2%-44.5%, respectively. Under the application of 0.5% and 1.0% silica fertilizer-husk ash, the Cd contents in brown rice were lower than 0.2 mg·kg-1, and the inorganic As contents in brown rice were lower than 0.35 mg·kg-1. In conclusion, the silica fertilizer-husk ash can improve soil quality and reduce the contents of Cd and As in brown rice, and it is eco-friendly and can be used to remedy the paddy soil contaminated with Cd and As.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Dióxido de Silicio , Suelo/química , Oryza/química , Fertilizantes/análisis , Contaminantes del Suelo/análisis
12.
Environ Sci Pollut Res Int ; 31(2): 2987-3003, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38079046

RESUMEN

Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil. The results showed that R. pseudoacacia L. had strong physiological regulation ability in response to Cd and Pb stress in contaminated soil. The total chlorophyll, malondialdehyde (MDA), soluble protein, and sulfhydryl contents, as well as antioxidant enzymes (superoxide dismutase, peroxidase, catalase) activities in R. pseudoacacia L. leaves under the 40 mg·kg-1 Cd and 1000 mg·kg-1 Pb co-contaminated soil were slightly altered. Cd uptake in R. pseudoacacia L. roots and stems increased, while the Pb content in the shoots of R. pseudoacacia L. under the combined Cd and Pb treatments decreased in relative to that in the single Pb treatments. The bacterial α-diversity indices (e.g., Sobs, Shannon, Simpson, Ace, and Chao) of R. pseudoacacia L. rhizosphere soil under Cd and Pb stress were changed slightly relative to the CK treatment. However, Cd and Pb stress could significantly (p < 0.05) alter the rhizosphere soil microbial communities. According to heat map and LEfSe (Linear discriminant analysis Effect Size) analysis, Bacillus, Sphingomonas, Terrabacter, Roseiflexaceae, Paenibacillus, and Myxococcaceae at the genus level were notably (p < 0.05) accumulated in the Cd- and/or Pb-contaminated soil. Furthermore, the MDA content was notably (p < 0.05) negatively correlated with the relative abundances of Isosphaeraceae, Gaiellales, and Gemmatimonas. The total biomass of R. pseudoacacia L. was positively (p < 0.05) correlated with the relative abundances of Xanthobacteraceae and Vicinamibacreraceae. Network analysis showed that Cd and Pb combined stress might enhance the modularization of bacterial networks in the R. pseudoacacia L. rhizosphere soil. Thus, the assembly of the soil bacterial communities in R. pseudoacacia L. rhizosphere may improve the tolerance of plants in response to Cd and/or Pb stress.


Asunto(s)
Metales Pesados , Robinia , Contaminantes del Suelo , Cadmio/análisis , Plomo/análisis , Metales Pesados/análisis , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/análisis , Biodegradación Ambiental
13.
J Hazard Mater ; 476: 135189, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013317

RESUMEN

The impacts of straw removal on rice Cd absorption, behaviour of Cd and microbial community in rhizosphere soil were investigated in paddy fields over two consecutive seasons. The results of the experiments in two fields revealed that straw removal promoted the transformation of soil Cd from acid-extractable and oxidisable fraction to residual fraction and reduced soil DTPA-Cd content with the reduction in DOC and Cd ions in soil porewater, thereby decreasing Cd content in rice. Specifically, the Cd content in brown rice was below 0.2 mg·kg-1 when all rice straw and roots were removed in the slightly Cd-contaminated soils. The α-diversity of soil microbial communities was less influenced by continuous straw removal, ß-diversity was altered and the relative abundances of Anaeromyxobacter, Methylocystis and Mycobacterium microbes were increased. Redundancy analysis and network analysis exhibited that soil pH predominantly influenced the microbial community. Path analysis revealed that the Cd content in brown rice could be directly influenced by the soil Total-Cd and DTPA-Cd, as well as soil pH and OM. Straw removal, including roots removal, is an economical and effective technique to reduce Cd accumulation in rice plants.


Asunto(s)
Cadmio , Oryza , Microbiología del Suelo , Contaminantes del Suelo , Oryza/metabolismo , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Agricultura , Bacterias/metabolismo , Concentración de Iones de Hidrógeno , Microbiota
14.
Sci Total Environ ; 922: 171245, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38408656

RESUMEN

Cadmium (Cd) and arsenic (As) are precedence-controlled contaminants in paddy soils, that can easily accumulate in rice grains. Limestone and sepiolite (LS) compound passivator can obviously reduce Cd uptake in rice, whereas Si fertilizer can effectively decrease rice As uptake. Here, the synergistic effects of the LS compound passivator coupled with Si fertilizer (LSCS) on the soil pH and availability of Si, Cd, and As, as well as rice grain Cd and As accumulation and its health risk were studied based on a 3-year consecutive field experiment. The results showed that the LSCS performed the best in terms of synchronously decreasing soil Cd and As availability and rice Cd and As uptake. In the LSCS treatments, soil pH gradually decreased with the rice-planting season, while soil available Cd and As contents gradually increased, suggesting that the influence of LSCS on Cd and As availability gradually weakened with rice cultivation. Nonetheless, the contents of Cd and inorganic As (i-As) in rice grains treated with LSCS were slightly affected by cultivation but were significantly lower than the single treatments of LS compound passivator or Si fertilizer. According to the Cd and As limit standards in food (GB2762-2022), the Cd and i-As content in rice grains can be lowered below the standard by using the 4500 kg/hm2 LS compound passivator coupled with 90 kg/hm2 Si fertilizer in soil and spraying 0.4 g/L Si fertilizer on rice leaves for at least three years. Furthermore, health risk evaluation revealed that LSCS treatments significantly reduced the estimated daily intake, annual excess lifetime cancer risk, and hazard quotient of Cd and i-As in rice grains. These findings suggest that LSCS could be a viable approach for reducing Cd and As accumulation in rice grains and lowering the potential health risks associated with rice.


Asunto(s)
Arsénico , Silicatos de Magnesio , Oryza , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Oryza/química , Silicio/química , Fertilizantes/análisis , Contaminantes del Suelo/análisis , Suelo/química , Carbonato de Calcio
15.
Huan Jing Ke Xue ; 45(2): 1118-1127, 2024 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-38471949

RESUMEN

In this study, a field experiment was conducted to examine the effects of the application of irrigation water containing Zn at the key growth period (booting stage and filling stage) on exchangeable Cd content in the soil, Cd concentration in pore water, and Cd uptake and transport in rice in a Cd-contaminated paddy field in Liuyang City, Hunan Province. The results indicated that: ① the application of irrigation water containing Zn during the key growth period could inhibit the releasing process of exchangeable Cd from the soil into pore water. Compared with that in the control, the content of exchangeable Cd in soil was slightly changed, but the concentration of Cd in soil pore water at the mature stage was significantly reduced by 16.7%-57.6%. ② The application of irrigation water containing Zn at the key growth period could significantly reduce the Cd content in various parts of rice. Cd contents in root, stem, and brown rice with the application of irrigation water containing 20 mg·L-1 Zn before the booting and the filling stage (BF1) were significantly decreased by 56.0%, 83.8%, and 85.2%, respectively. ③ Compared with the application of 100 mg·L-1 irrigation water containing Zn, the application of 20 mg·L-1 irrigation water containing Zn significantly reduced the uptake and transport of Cd in rice, and the translocation factor (TF) of Cd from rice roots to stems was also significantly reduced by 12.5%-56.3%, with the B1 and BF1 treatments reaching significant levels. These results suggested that the application of irrigation water containing Zn could significantly reduce the uptake and accumulation of Cd in rice, and the application of 20 mg·L-1 irrigation water containing Zn before the booting and filling stage could effectively realize the safe production of Cd-contaminated paddy fields.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo , Agua , Zinc
16.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artículo en Zh | MEDLINE | ID: mdl-38629562

RESUMEN

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Asunto(s)
Contaminantes del Suelo , Sorghum , Cadmio/análisis , Biodegradación Ambiental , Suelo , Arena , Ácido Cítrico , Contaminantes del Suelo/análisis , China , Grano Comestible/química
17.
Environ Sci Pollut Res Int ; 30(11): 31309-31319, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36445527

RESUMEN

The booting stage and filling stage have been considered as the key stages for arsenic (As) uptake in rice. In this study, a field study was conducted to investigate the influence of the topdressing different amounts of silicon (Si) fertilizer at the key stages on rice As uptake and accumulation. The results showed that topdressing of a low amount of Si fertilizer at the booting stage and filling stage could increase rice yield, promote the formation of iron plaque and the retention of As on iron plaque, and reduce inorganic As content in brown rice. Compared with the control, the rice grain yield was increased by 22.60% with the topdressing of 20 kg·hm-2 Si fertilizer at the grain filling stage. As compared with the control, the Fe and As content in iron plaque under the topdressing of 20 kg·hm-2 Si fertilizer at the booting stage and filling stage was significantly (p < 0.05) increased by 84.34% and 87.78% (Fe content) and 70.96% and 63.80% (As content), respectively. Meanwhile, contents of As in rice roots, stems, and husks at the topdressing of 20 kg·hm-2 Si fertilizer at the booting stage were significantly (p < 0.05) reduced by 45.10%, 33.34%, and 31.23%, respectively, relative to the control. The lowest inorganic As content (0.21 mg·kg-1) in brown rice was obtained at the topdressing of 20 kg·hm-2 Si fertilizer at the booting stage, which was close to the National Food Limit Standard of 0.20 mg·kg-1 (GB 2762-2017). Therefore, topdressing of 20 kg·hm-2 Si fertilizer at the booting stage might be considered as an effective method to reduce inorganic As content in brown rice.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Silicio/farmacología , Arsénico/análisis , Suelo , Fertilizantes , Hierro/farmacología , Contaminantes del Suelo/análisis
18.
Chemosphere ; 316: 137859, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36649896

RESUMEN

Limestone and sepiolite combined amendment (LS) and silicon (Si) fertilizers are commonly applied for the remediation of Cd-polluted paddy soil. However, it is difficult to further decrease cadmium (Cd) accumulation in rice grains by the individual application of LS or Si fertilizer to heavily Cd-polluted paddy fields. Two seasons of continuous field experiments were conducted in heavily Cd-polluted soil to study how the co-application of LS and Si fertilizer (namely soil-applied Si and foliar-sprayed Si) influences Cd and Si bioavailability in soil and Cd uptake and transport in rice. The results indicated that LS co-applied with soil-applied Si fertilizer treatments can enhance pH, cation exchange capacity (CEC), and available Si content in soil by 0.56-1.26 units, 19.3%-57.2%, and 14.7%-58.9% (p < 0.05), respectively, and reduce the toxicity characteristic leaching procedure (TCLP) extractable Cd content in soil by 26.5%-49.8% (p < 0.05) relative to the control. Furthermore, the co-application of LS and soil and foliar-sprayed Si fertilizer treatments reduced the Cd content in brown rice by 18.8%-70.6% (p < 0.05) compared with the control. Particularly, the brown rice Cd content under the co-application treatment (4500 kg/ha of soil applied LS, 90 kg/ha of Si fertilizer, and 0.4 g/L of foliar-sprayed Si fertilizer) was below 0.20 mg/kg in both seasons. Meanwhile, the Si content in rice was considerably enhanced by LS co-applied with Si fertilizer and negatively (p < 0.05) correlated with the rice Cd content. Therefore, the reduction of Cd bioavailability in soil and the antagonistic effect between Cd and Si in rice might be the key factors regulating Cd accumulation in rice via the co-application of LS and Si fertilizer.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Carbonato de Calcio/química , Fertilizantes/análisis , Oryza/química , Silicio/farmacología , Contaminantes del Suelo/análisis , Suelo/química
19.
Sci Total Environ ; 858(Pt 1): 159730, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306853

RESUMEN

Fe-Mn oxide-modified biochar (BC-FM) was used to remediate Cd-contaminated soil and mitigate Cd accumulation in rice. The roles of Fe and Mn in soil Cd immobilization and in controlling Cd uptake by rice were investigated via X-ray photoelectron spectroscopy (XPS) characterization and chemical analysis. Fe and Mn loaded on BC-FM increased the removal efficiencies of CaCl2 extractable Cd in soil and Cd in pore water compared to those in only biochar (BC)-treated soil, with maximum removal rates at 67.9 % and 77.8 %, respectively. The XPS results indicated that the redox reactions of the Fe-Mn oxides on BC-FM surface affected Cd immobilization in the soil. The Fe (II/III) components on BC-FM were primarily converted to Fe3O4 in the soil system, which may form stable complexes with Cd2+ (Fe-O-Cd) during the entire rice growth period, and Cd may be bound to MnO or Mn2O3 in the form of CdMn2O4. The excellent adsorption performance of BC-FM enhanced by Fe-Mn oxides reduced the available Cd in the soil and stimulated Fe and Mn transport in rice, thereby inhibiting Cd accumulation in the aerial parts of rice. Cd concentrations in brown rice under BC-FM treatments reached the national safety standard (0.2 mg/kg, GB2762-2017). And BC-FM significantly increased the biomass of brown rice with a maximum rate of 26.8 %. These findings suggest that BC-FM could be used as an efficient material for Cd-contaminated soil remediation, and Fe-Mn plays important role in immobilizing Cd in soil and reducing Cd transport in rice.


Asunto(s)
Oryza , Contaminantes del Suelo , Oryza/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Óxidos , Carbón Orgánico/química , Suelo/química , Compuestos Orgánicos/metabolismo
20.
Huan Jing Ke Xue ; 44(7): 4109-4118, 2023 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-37438308

RESUMEN

A field experiment was conducted in a lightly Cd-contaminated rice field in Ningxiang City, Hunan Province, to study the effects of straw removal measures on the soil Cd bioavailability and rice Cd accumulation. The results showed that:① two consecutive seasons of straw removal measures (T1-T4 treatments) effectively increased soil pH by 0.04-0.58 units, reduced soil organic matter by 0.68%-25.87%, and reduced the Cd content of rhizosphere soil by 3.76%-12.78%. ② The proportions of Cd in the acid-extractable fraction and oxidizable fraction decreased, and the proportion of Cd in the residual fraction increased. Furthermore, straw removal measures significantly reduced the bioavailability of Cd in rhizosphere soil, and the Cd contents in TCLP, DTPA, and CaCl2 extracts all significantly decreased compared with those in CK. ③ The straw removal measure could significantly reduce the content of DOC and Cd in soil pore water; and the contents of Cd in soil pore water decreased by 4.54%-40.00% and 2.75%-67.34% under the straw removal measure (T1-T4) for two consecutive seasons, respectively, indicating that DOC was one of the key factors affecting the content of Cd in soil pore water. ④ Two consecutive straw removal measures (T1-T4) reduced the accumulation of Cd in different rice tissues, among which, under the treatment of all straw and root removal (T4), the Cd contents of brown rice in late rice planting in 2020 and early rice planting in 2021 decreased by 18.52% and 39.69%, respectively. Therefore, full or partial removal of straw in Cd-contaminated rice fields is a powerful measure to reduce the risk of exceeding Cd levels in brown rice.


Asunto(s)
Oryza , Cadmio , Disponibilidad Biológica , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA