Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319449

RESUMEN

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genética
2.
Acta Pharmacol Sin ; 44(2): 308-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35948752

RESUMEN

Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.


Asunto(s)
Trastornos Migrañosos , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Nitroglicerina/efectos adversos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Umbral del Dolor , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
3.
Acta Pharmacol Sin ; 44(10): 2065-2074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225845

RESUMEN

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fibrosis/tratamiento farmacológico , Riñón/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos CD36/efectos de los fármacos
4.
J Biol Chem ; 296: 100624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33812996

RESUMEN

The reduction of insulin resistance or improvement of insulin sensitivity is the most effective treatment for type 2 diabetes (T2D). We previously reported that Nogo-B receptor (NGBR), encoded by the NUS1 gene, is required for attenuating hepatic lipogenesis by blocking nuclear translocation of liver X receptor alpha, suggesting its important role in regulating hepatic lipid metabolism. Herein, we demonstrate that NGBR expression was decreased in the liver of obesity-associated T2D patients and db/db mice. NGBR knockout in mouse hepatocytes resulted in increased blood glucose, insulin resistance, and beta-cell loss. High-fat diet (HFD)/streptozotocin (STZ)-treated mice presented the T2D phenotype by showing increased nonesterified fatty acid (NEFA) and triglyceride (TG) in the liver and plasma and increased insulin resistance and beta-cell loss. AAV-mediated NGBR overexpression in the liver reduced NEFA and TG in the liver and circulation and improved liver functions. Consequently, HFD/STZ-treated mice with hepatic NGBR overexpression had increased insulin sensitivity and reduced beta-cell loss. Mechanistically, NGBR overexpression restored insulin signaling of AMPKα1-dependent phosphorylation of AKT and GSK3ß. NGBR overexpression also reduced expression of endoplasmic reticulum stress-associated genes in the liver and skeletal muscle to improve insulin sensitivity. Together, our results reveal that NGBR is required to ameliorate T2D in mice, providing new insight into the role of hepatic NGBR in insulin sensitivity and T2D treatment.


Asunto(s)
Diabetes Mellitus Experimental/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Resistencia a la Insulina , Secreción de Insulina , Metabolismo de los Lípidos , Receptores de Superficie Celular/metabolismo , Animales , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores de Superficie Celular/genética , Transducción de Señal
5.
J Biol Chem ; 295(47): 15870-15882, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32913121

RESUMEN

Ascorbic acid, a water-soluble antioxidant, regulates various biological processes and is thought to influence cholesterol. However, little is known about the mechanisms underpinning ascorbic acid-mediated cholesterol metabolism. Here, we determined if ascorbic acid can regulate expression of proprotein convertase subtilisin/kexin 9 (PCSK9), which binds low-density lipoprotein receptor (LDLR) leading to its intracellular degradation, to influence low-density lipoprotein (LDL) metabolism. At cellular levels, ascorbic acid inhibited PCSK9 expression in HepG2 and Huh7 cell lines. Consequently, LDLR expression and cellular LDL uptake were enhanced. Similar effects of ascorbic acid on PCSK9 and LDLR expression were observed in mouse primary hepatocytes. Mechanistically, ascorbic acid suppressed PCSK9 expression in a forkhead box O3-dependent manner. In addition, ascorbic acid increased LDLR transcription by regulating sterol regulatory element-binding protein 2. In vivo, administration of ascorbic acid reduced serum PCSK9 levels and enhanced liver LDLR expression in C57BL/6J mice. Reciprocally, lack of ascorbic acid supplementation in L-gulono-γ-lactone oxidase deficient (Gulo-/-) mice increased circulating PCSK9 and LDL levels, and decreased liver LDLR expression, whereas ascorbic acid supplementation decreased PCSK9 and increased LDLR expression, ameliorating LDL levels in Gulo-/- mice fed a high fat diet. Moreover, ascorbic acid levels were negatively correlated to PCSK9, total and LDL levels in human serum samples. Taken together, these findings suggest that ascorbic acid reduces PCSK9 expression, leading to increased LDLR expression and cellular LDL uptake. Thus, supplementation of ascorbic acid may ameliorate lipid profiles in ascorbic acid-deficient species.


Asunto(s)
Ácido Ascórbico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proproteína Convertasa 9/biosíntesis , Receptores de LDL/biosíntesis , Animales , Células Hep G2 , Humanos , L-Gulonolactona Oxidasa/genética , L-Gulonolactona Oxidasa/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados , Proproteína Convertasa 9/genética , Receptores de LDL/genética
6.
Bioorg Med Chem Lett ; 43: 128051, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887441

RESUMEN

Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.


Asunto(s)
Diseño de Fármacos , Indenos/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Indenos/síntesis química , Indenos/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
7.
Bioorg Med Chem Lett ; 30(8): 127036, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088129

RESUMEN

Currently, synergistic inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and histone deacetylases (HDACs) has been a potential effective strategy for cancer treatment. Herein, by combining critical pharmacophores in approved drugs olaparib and chidamide, a series of novel 2-fluoro-5-((4-oxo-3,4-dihydrophthalazin-1-yl)methyl)benzoic acid derivatives were designed and synthesized. All efforts led to a good dual PARP-1/HDAC-1 inhibitor, compound 4, with IC50 values of 4.2 and 340 nM against PARP-1 and HDAC-1, which were as potent as olaparib and chidamide respectively. The MTT assay further demonstrated that compound 4 had potent inhibitory activities against BRCA1/2-proficient K562 and MDA-MB-231 cells with GI50 values of 5.6 and 4.3 µM, respectively. Therefore, our results suggested that compound 4 could be a promising dual PARP-1/HDAC-1 inhibitor for further studies. In addition, a few excellent PARP-1 inhibitors such as 7-9 and HDAC-1 inhibitors such as 12 were serendipitously discovered, which also could be further studied in our next work.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 29(9): 1090-1093, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833108

RESUMEN

Inhibition of MAO-B has been an effective strategy for the treatment of Parkinson's disease. To find more potent and selective MAO-B inhibitors with novel chemical scaffold, we designed and synthesized a series of new 2,3-dihydro-1H-inden-1-amine derivatives on basis of our previous study. Furthermore, the corresponding structure-activity relationship (SAR) of these compounds is detailedly discussed. Compounds L4 (IC50 = 0.11 µM), L8 (IC50 = 0.18 µM), L16 (IC50 = 0.27 µM) and L17 (IC50 = 0.48 µM) showed similar MAO-B inhibitory activity as Selegiline. Moreover, L4, L16 and L17 also exhibited comparable selectivity with Selegiline, indicating that L4, L16 and L17 could be promising selective MAO-B inhibitors for further study.


Asunto(s)
Antiparkinsonianos/síntesis química , Antiparkinsonianos/farmacología , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Antiparkinsonianos/química , Clorgilina/química , Clorgilina/farmacología , Diseño de Fármacos , Humanos , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Conformación Proteica , Selegilina/química , Selegilina/farmacología , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 29(8): 1012-1018, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30792039

RESUMEN

Herein we report our efforts of developing reversible selective hMAO-B inhibitors based on isatin, a fragment in an X-ray crystal structure. Five different scaffolds were designed and many compounds were synthesized. Among them, compound A3 demonstrated very high potency and isoform selectivity against hMAO-B, 11 and 13 times more potent (IC50 = 3 nM) and 23.64 and 6.8 times more selective than the marked drugs, selegiline and safinamide. However, the endeavors to modify the polar 3-one group of isatin, that is in a hydrophobic environment in the binding site of hMAO-B, to small nonpolar hydrophobic groups did not bring about improved hMAO-B inhibitors, which may challenge our understanding of molecular interactions and molecular recognition in biological systems.


Asunto(s)
Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/síntesis química , Monoaminooxidasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Isatina/química , Isatina/metabolismo , Simulación de Dinámica Molecular , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 26(6): 1508-1511, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26883149

RESUMEN

Eight human telomerase inhibitors (5a-5h) having the core of N-acyl-4,5-dihydropyrazole with anticancer effects were identified in this study. Biological results revealed that a few compounds had potent anticancer activities against three common tumor cell lines (SGC-7901, HepG2 and MGC-803). Among them, compound 5c, with a molecular weight of only 272.2 Da, had antiproliferative activities against SGC-7901 and MGC-803 with EC50 values of 2.06 ± 0.17 and 2.89 ± 0.62 µM, respectively, better than 5-Fluorouracil. Compound 5c inhibited the enzyme of telomerase with an IC50 value of 1.86 ± 0.51 µM, surpassing the control compound, ethidium bromide. Modeling study showed that this compound can reside in the binding pocket of the telomerase/TNA:DNA hairpin complex. When the moiety of N-acyl was changed to N-sulfonyl, the gotten compounds (8a-8i) had deteriorative activities against both these three cancer cell lines and the enzyme of telomerase.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazoles/farmacología , Telomerasa/antagonistas & inhibidores , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Células Hep G2 , Humanos , Modelos Moleculares , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Telomerasa/metabolismo
11.
Bioorg Med Chem ; 24(8): 1741-8, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26964672

RESUMEN

Based on our recently reported selective hMAO-A inhibitors, on which, the intramolecular cyclization led to a very interesting change of isoform selectivity. A series of selective hMAO-B inhibitors (3a-3u) with novel scaffold of tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one were designed and synthesized. Compound 3u (IC50=221 nM) exhibited the best inhibitory activity and isoform selectivity against hMAO-B, superior to selegiline (IC50=321 nM), which is a commercial selective hMAO-B inhibitor used to Parkinson's disease. Modeling study indicated that the selectivity of our compounds to hMAO-B is determined by at least two residues, i.e., Ile 199 and Cys 172 (or corresponded Phe 208 and Asn 181 of hMAO-A). These data support further studies to assess rational design of more efficiently selective hMAO-B inhibitors.


Asunto(s)
Benzoxazinas/farmacología , Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Pirazoles/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/química , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
12.
Chem Biodivers ; 12(1): 116-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25641840

RESUMEN

Due to the rising incidence and lack of effective treatments, malignant melanoma is the most dangerous form of skin cancer, so that new treatment strategies are urgently needed. Several recent developments indicate that the V600E mutant BRAF (BRAF(V600E) ) is a validated target for antimelanoma-drug development. Based on in silico screening results, a series of novel pyrazole derivatives has been designed, synthesized, and evaluated in vitro for their inhibitory activities against BRAF(V600E) melanoma cells. Compound 3d exhibited the most potent inhibitory activity with an IC50 value of 0.63 µM for BRAF(V600E) and a GI50 value of 0.61 µM for mutant BRAF-dependent cells. Furthermore, the QSAR modeling and the docking simulation of inhibitor analogs provide important pharmacophore clues for further structural optimization.


Asunto(s)
Descubrimiento de Drogas , Melanoma/tratamiento farmacológico , Pirazoles/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Humanos , Melanoma/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Pirazoles/química , Pirazoles/uso terapéutico , Neoplasias Cutáneas/genética
13.
J Biol Chem ; 288(42): 30585-30596, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23996074

RESUMEN

The MLL fusion proteins, AF9 and ENL, activate target genes in part via recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like). Here we report biochemical, biophysical, and functional characterization of the interaction between DOT1L and MLL fusion proteins, AF9/ENL. The AF9/ENL-binding site in human DOT1L was mapped, and the interaction site was identified to a 10-amino acid region (DOT1L865-874). This region is highly conserved in DOT1L from a variety of species. Alanine scanning mutagenesis analysis shows that four conserved hydrophobic residues from the identified binding motif are essential for the interactions with AF9/ENL. Binding studies demonstrate that the entire intact C-terminal domain of AF9/ENL is required for optimal interaction with DOT1L. Functional studies show that the mapped AF9/ENL interacting site is essential for immortalization by MLL-AF9, indicating that DOT1L interaction with MLL-AF9 and its recruitment are required for transformation by MLL-AF9. These results strongly suggest that disruption of interaction between DOT1L and AF9/ENL is a promising therapeutic strategy with potentially fewer adverse effects than enzymatic inhibition of DOT1L for MLL fusion protein-associated leukemia.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Metiltransferasas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Factores de Elongación Transcripcional/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células HEK293 , N-Metiltransferasa de Histona-Lisina , Humanos , Metiltransferasas/química , Metiltransferasas/genética , Mutagénesis Sitio-Dirigida , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/genética , Unión Proteica , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
14.
J Med Chem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913497

RESUMEN

Thrombo-inflammation is closely associated with a few severe cardiovascular and infectious diseases. Factor XIIa (FXIIa) in the intrinsic coagulation pathway plays a pivotal role in the development of thrombo-inflammation and its inhibition has emerged as a potential therapeutic approach for thrombo-inflammatory disorders. Nonetheless, as of now, few small-molecule FXIIa inhibitors have demonstrated notable effectiveness against thrombo-inflammation, with none progressing into clinical stages. Herein, we present potent, covalent, reversible, and selective small-molecule FXIIa inhibitors such as 4a and 4j obtained through structure-based drug design. Compounds 4a and 4j showed significant anticoagulation and substantial anti-inflammatory effects in vitro, coupled with exceptional plasma stability. Furthermore, in carrageenan-induced thrombosis models, 4a and 4j demonstrated remarkable dual antithrombotic and anti-inflammatory activity when administered orally. Compound 4j exhibited a favorable safety profile without obvious tissue toxicity in mice, suggesting its potential as an oral therapeutic option for thrombo-inflammation.

15.
iScience ; 27(5): 109741, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706871

RESUMEN

Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.

16.
Mini Rev Med Chem ; 23(1): 67-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35657046

RESUMEN

Polo-like kinase 4 (PLK4), a serine/threonine kinase, is a member of the PLK family. As a key regulator of the cell cycle, PLK4 controls centrosome duplication and mitosis. Abnormal PLK4's function can induce centrosome amplification, leading to tumorigenesis, therefore, PLK4 has been regarded as a promising target for cancer therapy, and PLK4 inhibitors have potentials to treat multiple cancers and other PLK4-associated human disorders, such as myelodysplastic syndrome. In addition, PLK4 may function as a DNA-damage sensitizer, therefore improving the efficacy of chemotherapy. To date, some small-molecule inhibitors with different chemical scaffolds targeting PLK4 have been reported, among which, CFI-400945 has entered clinical trials for the treatment of various solid tumors, myeloid leukemia, and myelodysplastic syndrome. In this review, the structure and biological functions of PLK4 with other homologous PLKs are compared; the roles of PLK4 in different cancers are reviewed; and PLK4 inhibitors disclosed in patent or literature are summarized. Used alone or in combination with other anticancer drugs in preclinical and clinical studies, PLK4 inhibitors have shown significant efficacy in the treatment of different cancers, demonstrating that PLK4 could be a critical target for cancer diagnosis and therapy. However, our understanding of PLK4 is still limited, and novel mechanisms of PLK4 should be identified in future studies.


Asunto(s)
Antineoplásicos , Síndromes Mielodisplásicos , Neoplasias , Humanos , Proteínas Serina-Treonina Quinasas/química , Neoplasias/patología , Centrosoma/metabolismo , Centrosoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/metabolismo
17.
J Med Chem ; 66(8): 5332-5363, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37037122

RESUMEN

Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.


Asunto(s)
Factor XIa , Trombosis , Humanos , Coagulación Sanguínea , Anticoagulantes/farmacología , Trombosis/tratamiento farmacológico , Descubrimiento de Drogas
18.
Nutrients ; 15(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37432306

RESUMEN

Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber-DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD.


Asunto(s)
Inflamación , Hepatopatías Alcohólicas , Estrés Oxidativo , Transducción de Señal , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Etanol/toxicidad , Inflamación/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939513

RESUMEN

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Linfocitos T CD8-positivos/metabolismo , FN-kappa B , Colesterol/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Movimiento Celular , Microambiente Tumoral
20.
Hepatol Commun ; 7(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996002

RESUMEN

BACKGROUND: Hyperlipidemia (hypercholesterolemia and/or hypertriglyceridemia) is a risk factor for atherosclerosis. Nogo-B receptor (NgBR) plays important roles in hepatic steatosis and cholesterol transport. However, the effect of NgBR overexpression on atherosclerosis remains unknown. MATERIALS AND METHODS: Apolipoprotein E deficient (ApoE-/-) mice infected with adeno-associated virus (AAV)-NgBR expression vector were fed a high-fat diet for 12 weeks, followed by determination of atherosclerosis and the involved mechanisms. RESULTS: We determined that high expression of NgBR by AAV injection mainly occurs in the liver and it can substantially inhibit en face and aortic root sinus lesions. NgBR overexpression also reduced levels of inflammatory factors in the aortic root and serum, and levels of cholesterol, triglyceride, and free fatty acids in the liver and serum. Mechanistically, NgBR overexpression increased the expression of scavenger receptor type BI and the genes for bile acid synthesis, and decreased the expression of cholesterol synthesis genes by reducing sterol regulatory element-binding protein 2 maturation in the liver, thereby reducing hypercholesterolemia. In addition, NgBR overexpression activated AMP-activated protein kinase α via the Ca2+ signaling pathway, which inhibited fat synthesis and improved hypertriglyceridemia. CONCLUSIONS: Taken together, our study demonstrates that overexpression of NgBR enhanced cholesterol metabolism and inhibited cholesterol/fatty acid synthesis to reduce hyperlipidemia, and reduced vascular inflammation, thereby inhibiting atherosclerosis in ApoE-/- mice. Our study indicates that NgBR might be a potential target for atherosclerosis treatment.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Colesterol , Dieta Alta en Grasa/efectos adversos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/genética , Hiperlipidemias/complicaciones , Hipertrigliceridemia/complicaciones , Ratones Noqueados para ApoE
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA