Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer ; 23(1): 113, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802795

RESUMEN

BACKGROUND: The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS: Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS: CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION: This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma Hepatocelular , Proliferación Celular , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Proteínas de Neoplasias , ARN Circular , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Ferroptosis/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Circular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Lab Invest ; 103(7): 100130, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36925047

RESUMEN

Collectin subfamily member 10 (COLEC10), a C-type lectin mainly expressed in the liver, is involved in the development of hepatocellular carcinoma (HCC). However, its underlying molecular mechanism in HCC progression remains unknown. In this study, reduced COLEC10 expression in tumor tissues was validated using various HCC cohorts and was associated with poor patient prognosis. COLEC10 overexpression attenuated HCC cell growth and migration abilities in vitro and in vivo. We identified that COLEC10 was a novel interactor of 78-kDa glucose-regulated protein (GRP78), a master modulator of the unfolded protein response in the endoplasmic reticulum (ER). COLEC10 overexpression potentiated ER stress in HCC cells, as demonstrated by elevated expression levels of phosphorylated protein kinase RNA-like ER kinase, phosphorylated inositol-requiring protein 1α, activating transcription factor 4, DNA damage-inducible transcript 3, and X-box-binding protein 1s. The ER in COLEC10-overexpressing cells also showed a dilated and fragmented pattern. Mechanistically, COLEC10 overexpression increases GRP78 occupancy through direct binding by the C-terminal carbohydrate recognition domain in the ER, which released and activated the ER stress transducers protein kinase RNA-like ER kinase and phosphorylated inositol-requiring protein 1α, triggering the unfolded protein response activity. COLEC10-overexpressing HCC cells generated a relatively high reactive oxygen species level and switched to apoptotic cell death under sorafenib-treated conditions. Our study provides the first novel view that COLEC10 inhibits HCC progression by regulating GRP78-mediated ER stress signaling and may serve as a promising therapeutic and prognostic biomarker.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Chaperón BiP del Retículo Endoplásmico , Neoplasias Hepáticas/metabolismo , Estrés del Retículo Endoplásmico , Apoptosis , ARN , Proteínas Quinasas , Colectinas
3.
Liver Int ; 40(11): 2672-2684, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32564486

RESUMEN

BACKGROUND & AIMS: T-cell receptor (TCR) repertoire is ambiguously changed in chronic hepatitis B (CHB) patients during antivirus therapy. We tried to assess TCR repertoire dynamics and its clinical significance upon HBeAg seroconversion in CHB patients. METHODS: Twenty CHB patients undergoing 1-year entecavir (ETV) treatment were enrolled, including 10 complete response (CR) vs 10 non-complete response (NCR) patients based on HBeAg seroconversion at week 48. The TCRß complementarity-determining region 3 (CDR3) of peripheral CD4+ and CD8+ T cells at weeks 0, 12 and 48 was analyzed by unbiased high-throughput sequencing. The TCR repertoire profiles and their correlations with serological parameters were analyzed. RESULTS: The diversity of TCRß repertoires was decreasing in CR patients but increasing in NCR patients. The distribution pattern of TCR repertoires stratified according to clonotype frequencies changed in the opposite direction between CR and NCR patients. Narrow amounts of newly appearing clonotypes in CR patients experienced a more intensive and robust expansion and this phenomenon could occur as early as week 12 for the CD4+ subset but later at week 48 for the CD8+ subset. There existed some CR-exclusive clonotypes with a relatively low but increasing frequency at week 48. The number of unique TCRß clonotypes was positively correlated with the ALT or HBV DNA level in CR patients but showed no or negative correlation in NCR patients. CONCLUSION: Distinct TCR profiles contribute to predicting HBeAg seroconversion in CHB patients during ETV treatment and certain TCRß CDR3 motif may be utilized for CHB immunotherapy in the future.


Asunto(s)
Antígenos e de la Hepatitis B , Hepatitis B Crónica , Antivirales/uso terapéutico , Linfocitos T CD8-positivos , Regiones Determinantes de Complementariedad , ADN Viral , Guanina/análogos & derivados , Virus de la Hepatitis B/genética , Hepatitis B Crónica/tratamiento farmacológico , Humanos , Seroconversión , Resultado del Tratamiento
4.
J Cell Physiol ; 234(10): 17786-17799, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887508

RESUMEN

Bile duct cancer (BDC), also known as cholangiocarcinoma, is a highly desmoplastic cancer with a growth pattern characterized by periductal extension and infiltration. Studies have suggested that microRNAs (miRNAs) play an important role in BDC progression. Here we aim at investigating the effects of miR-329 on BDC development, focusing especially on epithelial-to-mesenchymal transition (EMT) in vitro and lymph node metastasis in vivo. Expression microarrays associated with BDC tissues were collected and differentially expressed genes were analyzed, followed by miRNA target prediction and verification. The role miR-329 played in BDC was examined using gain-of-function and loss-of-function methods. The expressions of miR-329, laminin subunit beta 3 (LAMB3), and EMT markers, in addition to cell proliferation, migration, and invasion were evaluated. Furthermore, nude mice models of BDC were established to observe tumor growth and metastatic lymph nodes. The LAMB3 was identified as an upregulated gene based on the GSE77984 and GSE45001 microarray analysis. LAMB3 was also predicted and confirmed to be a target gene of miR-329 by dual-luciferase reporter assay. Through further cell experiments, the EMT process was reversed, cell proliferation, invasion, and migration were suppressed, when miR-329 was upregulated. Furthermore, in vivo experiments exhibited that the overexpression of miR-329 inhibited tumor growth and the number of metastatic lymph nodes. This study provides in vivo and in vitro evidence that miR-329 inhibits BDC progression through translational repression of LAMB3. Therefore, the obtained results may aid as an experimental basis for improving prognosis of BDC.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Moléculas de Adhesión Celular/genética , Transición Epitelial-Mesenquimal/genética , Metástasis Linfática/genética , MicroARNs/genética , Animales , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Transducción de Señal/genética , Regulación hacia Arriba/genética , Kalinina
5.
Cell Oncol (Dordr) ; 47(5): 1897-1910, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39080215

RESUMEN

BACKGROUND: Liver cancer stem cells (CSCs) contribute to tumor initiation, progression, and recurrence in hepatocellular carcinoma (HCC). The Wnt/ß-catenin pathway plays a crucial role in liver cancer stemness, progression, metastasis, and drug resistance, but no clinically approved drugs have targeted this pathway efficiently so far. We aimed to elucidate the role of COLEC10 in HCC stemness. METHODS: The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases were employed to search for the association between COLEC10 expression and HCC stemness. Colony formation, sphere formation, side population, and limiting dilution tumor initiation assays were used to identify the regulatory role of COLEC10 overexpression in the stemness of HCC cell lines. Wnt/ß-catenin reporter assay and immunoprecipitation were performed to explore the underlying mechanism. RESULTS: COLEC10 level was negatively correlated with HCC stemness. Elevated COLEC10 led to decreased expressions of EpCAM and AFP (alpha-fetoprotein), two common markers of liver CSCs. Overexpression of COLEC10 inhibited HCC cells from forming colonies and spheres, and reduced the side population numbers in vitro, as well as the tumorigenic capacity in vivo. Mechanically, we demonstrated that overexpression of COLEC10 suppressed the activity of Wnt/ß-catenin signaling by upregulating Wnt inhibitory factor WIF1 and reducing the level of cytoplasmic ß-catenin. COLEC10 overexpression promoted the interaction of ß-catenin with the component of destruction complex CK1α. In addition, KLHL22 (Kelch Like Family Member 22), a reported E3 ligase adaptor predicted to interact with CK1α, could facilitate COLEC10 monoubiquitination and degradation. CONCLUSION: COLEC10 inhibits HCC stemness by downregulating the Wnt/ß-catenin pathway, which is a promising target for liver CSC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Vía de Señalización Wnt , beta Catenina , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , beta Catenina/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones
6.
Zhonghua Yi Shi Za Zhi ; 42(6): 366-9, 2012 Nov.
Artículo en Zh | MEDLINE | ID: mdl-23363852

RESUMEN

«Zeng Bu Shi Wu Ben Cao Bei Kao¼is the masterpiece of Guangdong food material medica works Based on the investigation of the existing version. We think the statement that «Chinese ancient books catalogue¼ record the first version of the book is in ten years of Yong Zheng is wrong. We infer that «Zeng Bu Shi Wu Ben Cao Bei Kao¼'s author named He kejian and «Sheng Cao Yao Xing Be Yao¼'s author named He Jian is the same person. However, the former book is mainly sorted by He Shengxuan, and it maybe initially carved in 1738.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA