Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Hyperthermia ; 40(1): 2255760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37726101

RESUMEN

PURPOSE: High-intensity focused ultrasound (HIFU) represents an emerging noninvasive modality for tumor treatment. While biological responses and immunological change associated with incomplete ablation have not been thoroughly investigated. This study aims to evaluate the damage effect of HIFU incomplete ablation via establishing animal model and further explore its possible mechanism to inhibit tumor growth. METHODS: The rabbit VX2 breast cancer model was established and received HIFU treatment with complete ablation (100% tumor volume) and incomplete ablation (about 80% tumor volume) under real-time B-ultrasound monitoring. Histopathological alterations, dynamics of tumor cell apoptosis and proliferation, expression levels of VEGF, MMP-9, IL-2R, TGF-ß1, HSP-70, IL-6, IL-8, and INF-γ, and the presence of circulating tumor cells (CTCs) were evaluated post-HIFU incomplete ablation. RESULTS: For HIFU 80% ablation group, there was an 85.85% reduction in tumor volume 21 days post-intervention. A marked increase in tumor cell apoptosis and a concomitant decrease in proliferation were observed. Notably, distant tumor metastasis rates, CTC counts, and expression levels of VEGF, MMP-9, IL-2R, TGF-ß1, IL-6, and IL-8 were significantly reduced. In contrast, INF-γ and HSP-70 expressions were notably elevated, aligning with findings from the 100% ablation group. CONCLUSIONS: HIFU incomplete ablation, with an 80% tumor ablation rate, induces substantial tumor damage, augments tumor cell apoptosis, and triggers an anti-tumor immune response, curtailing metastasis. These insights may underpin further investigations into the therapeutic implications of HIFU incomplete ablation.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neoplasias , Animales , Conejos , Factor de Crecimiento Transformador beta1 , Interleucina-6 , Interleucina-8 , Factor A de Crecimiento Endotelial Vascular , Pronóstico , Proteínas HSP70 de Choque Térmico
2.
Educ Inf Technol (Dordr) ; : 1-29, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-37361845

RESUMEN

This study explored the relationships among regulated learning, teaching presence and student engagement in blended learning. A two-level model was designed based on contextual factors (teaching presence) and individual factors (regulated learning), and experience sampling method was employed to collect intensive longitudinal data on 139 participants across three universities over 13 weeks in a blended course. Furthermore, multilevel regression analysis were conducted to examine the effects of teaching presence, self-regulated learning (SRL), co-regulated learning (CoRL) on intra- and interindividual variance in student engagement. The findings were as follows. 1) Perceived teacher support and instructional design fit had a significant positive effect on cognitive and emotional engagement and were crucial contextual factors that influenced intraindividual variance in learning engagement. 2) SRL and CoRL were copredictors of student engagement in blended learning. CoRL was more related to emotional engagement, while SRL was more related to cognitive engagement. 3) Modality had a significant effect on cognitive engagement but not on emotional engagement. 4) SRL and CoRL positively moderated the relationship between perceived teaching presence and cognitive engagement, while they negatively moderated the relationship between teacher support and emotional engagement, i.e., the relation between teacher support and emotional engagement was stronger in situations of low SRL or CoRL. Implications for teaching practice on blended learning were also discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s10639-023-11717-5.

3.
Mater Today Bio ; 25: 101005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38445013

RESUMEN

Lung cancer is the deadliest kind of cancer in the world, and the hypoxic tumor microenvironment can significantly lower the sensitivity of chemotherapeutic drugs and limit the efficacy of different therapeutic approaches. In order to overcome these problems, we have designed a drug-loaded targeted DNA nanoflowers encoding AS1411 aptamer and encapsulating chemotherapeutic drug doxorubicin and oxygen-producing drug horseradish peroxidase (DOX/HRP-DFs). These nanoflowers can release drugs in response to acidic tumor microenvironment and alleviate tumor tissue hypoxia, enhancing the therapeutic effects of chemotherapy synergistic with sonodynamic therapy. Owing to the encoded drug-loading sequence, the doxorubicin loading rate of DNA nanoflowers reached 73.24 ± 3.45%, and the drug could be released quickly by disintegrating in an acidic environment. Furthermore, the AS1411 aptamer endowed DNA nanoflowers with exceptional tumor targeting properties, which increased the concentration of chemotherapeutic drug doxorubicin in tumor cells. It is noteworthy that both in vitro and in vivo experiments demonstrated DNA nanoflowers could considerably improve the hypoxia of tumor cells, which enabled the generation of sufficient reactive oxygen species in combination with ultrasound, significantly enhancing the therapeutic effect of sonodynamic therapy and evidently inhibiting tumor growth and metastasis. Overall, this DNA nanoflowers delivery system offers a promising approach for treating lung cancer.

4.
Front Microbiol ; 14: 1108064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937280

RESUMEN

Tuberculosis is a chronic infectious disease, the treatment of which is challenging due to the formation of cellulose-containing biofilms by Mycobacterium tuberculosis (MTB). Herein, a composite nanoparticle loaded with cellulase (CL) and levofloxacin (LEV) (CL@LEV-NPs) was fabricated and then combined with ultrasound (US) irradiation to promote chemotherapy and sonodynamic antimicrobial effects on Bacillus Calmette-Guérin bacteria (BCG, a mode of MTB) biofilms. The CL@LEV-NPs containing polylactic acid-glycolic acid (PLGA) as the shell and CL and LEV as the core were encapsulated via double ultrasonic emulsification. The synthesized CL@LEV-NPs were uniformly round with an average diameter of 196.2 ± 2.89 nm, and the zeta potential of -14.96 ± 5.35 mV, displaying high biosafety and sonodynamic properties. Then, BCG biofilms were treated with ultrasound and CL@LEV-NPs separately or synergistically in vivo and in vitro. We found that ultrasound significantly promoted biofilms permeability and activated CL@LEV-NPs to generate large amounts of reactive oxygen species (ROS) in biofilms. The combined treatment of CL@LEV-NPs and US exhibited excellent anti-biofilm effects, as shown by significant reduction of biofilm biomass value and viability, destruction of biofilm architecture in vitro, elimination of biofilms from subcutaneous implant, and remission of local inflammation in vivo. Our study suggested that US combined with composite drug-loaded nanoparticles would be a novel non-invasive, safe, and effective treatment modality for the elimination of biofilm-associated infections caused by MTB.

5.
Int J Nanomedicine ; 17: 2165-2187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592098

RESUMEN

Purpose: Triple negative breast cancer (TNBC) is challenging for effective remission due to its very aggressive, extremely metastatic and resistant to conventional chemotherapy. Herein, a multifunctional theranostic nanoparticle was fabricated to enhance tumor targeted imaging and promote focused ultrasound (FUS) ablation and chemotherapy and sonodynamic therapy (SDT). A multi-modal synergistic therapy can improve the therapeutic efficacy and prognosis of TNBC. Methods: AS1411 aptamer modified PEG@PLGA nanoparticles encapsulated with perfluorohexane (PFH) and anti-cancer drug doxorubicin (DOX) were constructed (AS1411-DOX/PFH-PEG@PLGA) to enhance tumor targeted imaging to guide ablation and synergistic effect of FUS/chemotherapy. FUS was utilized to trigger the co-release of doxorubicin and simultaneously PFH phase transition and activate DOX for SDT effect. The physicochemical, phase-changeable imaging capability, biosafety of nanoparticles and multi-mode synergistic effects on growth of TNBC were thoroughly evaluated in vivo and in vitro. Results: The synthesized AS1411-DOX/PFH-PEG@PLGA (A-DPPs) nanoparticles are uniformly round with an average diameter of 306.03 ± 5.35 nm and the zeta potential of -4.05 ± 0.13 mV, displaying high biosafety and FUS-responsive drug release in vitro and in vivo. AS1411 modified NPs specifically bind to 4T1 cells and elevate the ultrasound contrast agent (UCA) image contrast intensity via PFH phase-transition after FUS exposure. Moreover, the combined treatment of A-DPPs nanoparticles with FUS exhibited significantly higher apoptosis rate, stronger inhibitory effect on 4T1 cell invasion in vitro, induced more reactive oxygen species (ROS), and enhanced anti-tumor effect compared to a single therapy (p < 0.05). Additionally, the joint strategy resulted in more intense cavitation effect and larger ablated areas and reduced energy efficiency factor (EEF) both in vitro and in vivo. Conclusion: The multifunctional AS1411-DOX/PFH-PEG@PLGA nanoparticles can perform as a marvelous synergistic agent for enhanced FUS/chemotherapy, promote real-time contrast enhanced US imaging and improve the therapeutic efficacy and prognosis of TNBC.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Ratones , Medicina de Precisión , Proteína FUS de Unión a ARN , Nanomedicina Teranóstica , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA