Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Ecotoxicol Environ Saf ; 265: 115530, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774543

RESUMEN

Toxic elements, such as Cd and Pb are of primary concern for soil quality and food security owing to their high toxicity and potential for bioaccumulation. Knowledge of the spatial variability of Cd and Pb in soil-rice systems across the landscape and identification of their driving factors are prerequisites for developing appropriate management strategies to remediate or regulate these hazardous contaminants. Considering the role of rice (Oryza sativa) as a dietary staple in China, this study aimed to examine the distribution patterns and drivers of Cd and Pb in tropical soil-rice systems across Hainan Island. To achieve this goal, 229 pairs of representative paddy soil and rice samples combined with a set of environmental covariates at the island scale were systematically analyzed. Arithmetic mean values (AMs) of Cd and Pb in rice were 0.080 and 0.199 mg kg-1, and exceeded the standard limits by 27.1% and 22.7%, respectively. We found that the AMs of Cd and Pb concentrations in paddy soil were 0.294 and 43.0 mg kg-1. Additionally, Cd in 29.26% of soil samples and Pb in 11.35% of soil samples exceeded the risk screening value for toxic elements. The enrichment factor generally showed that soil Cd and Pb on Hainan Island were both moderately enriched. Results obtained from both Spearman's correlation and stepwise regression analyses suggest that the concentrations of soil Cd and Pb are significantly influenced by the soil Na and Fe concentrations. Specifically, an increment of 1 g kg-1 in soil Na caused a rise of soil Cd and Pb by 57.1 mg kg-1 and 34.4 mg kg-1, respectively, while an increase of 1 g kg-1 in soil Fe resulted in a rise by 25.0 mg kg-1 and 14.5 mg kg-1. Similarly for rice grains, an increment of 1 g kg-1 in soil Ca resulted in a rise of rice Pb by 30.8 mg kg-1, whereas an increase of 1 g kg-1 in soil Mg led to a decrease in rice Pb by 14.8 mg kg-1. However, no significant correlation between soil Se and rice Cd concentrations was found. Furthermore, the result of geographically weighted regression revealed that the impacts of soil Na, Ca, Fe, and Mg on rice Cd were more significant in the western region, whereas the effects of soil Na and Fe on rice Pb were stronger in the northeastern region. This study provides new insights for the identification of factors influencing the distribution and accumulation of Cd and Pb in tropical island agroecosystems.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo , Plomo/análisis , Contaminantes del Suelo/análisis
2.
J Environ Manage ; 335: 117547, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841002

RESUMEN

A low-cost practical technology is urgently needed to minimize cadmium (Cd) pollution in rice in many parts of the world. In the present study, we elucidated the effects and mechanisms of four alkaline compound materials via field experiments in southern China. The results indicated that these two alkaline Si-rich compound materials (AF-SC, alkaline fertilizer compounded with Si-Ca mineral powder; AF-SS, AF compounded with Si-Se mineral powder) could achieve multi-objective gains by simultaneously reducing grain Cd, increasing yield and improving soil quality at a lower cost. The grain Cd content was decreased by an average of about 75% in two field sites, which even ensured safe grain production in areas with medium Cd pollution. The rice yield was increased by a range of 6.7%-21.0% for different varieties and sites. Moreover, the materials abated soil acidification with the increase of 0.36-0.62 pH units, increased the contents of available P and available Si, subsequently reducing available Cd content in soils. Structural equation model and regression analysis showed that the alkaline environment provided by the alkaline components in compound materials effectively inhibited the formation of Fe/Mn plaques on the root surface, reducing the uptake of Cd from the environment. In addition, the decrease in grain Cd was also attributed to the inhibition of Cd translocation from root to stem, mainly caused by the increase of available Si. These findings reveal that the base application of such alkaline Si-rich compound materials is a viable solution for the remediation of Cd-polluted paddy fields in south China.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/química , Polvos/análisis , Contaminantes del Suelo/química , Suelo/química , Minerales/análisis , Grano Comestible/química , Oryza/química
3.
Ecotoxicol Environ Saf ; 213: 112075, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33636468

RESUMEN

Biochars were studied for their impacts on the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil. The health risks of PAHs taken up by vegetables were assessed by growing Chinese cabbage in both unamended soil and biochar-amended soils. In the unamended soil, the total 16 PAHs (Σ16PAHs) content decreased by 77.38% after planting the vegetable. The dissipation percentages of low-molecular-weight PAHs (LMW-PAHs), medium-molecular-weight PAHs (MMW-PAHs), and high-molecular-weight PAHs (HMW-PAHs) were 82.37%, 72.65%, and 68.63%, respectively. A significant negative correlation was determined between the dissipation percentages of PAHs in soil and the logKow of PAHs (p < 0.01), indicating that the affinity of PAHs for soil particles was one of an important limiting factors on the dissipation of PAHs. The uptake of PAHs by plant was significantly reduced with the increase in the molecular weight of the PAHs (76.55% for LWM-PAHs, 17.13% for MMW-PAHs, and 6.05% for HMW-PAHs). Addition of biochars to the soil decreased the dissipation of Σ16PAHs (73.59-77.01%), mostly due to a decrease in the dissipation of LMW-PAHs and MMW-PAHs. This finding was due to the immobilization of LMW-PAHs and MMW-PAHs within the biochar micropores. A marked reduction of Proteobacteria in biochar-amended soils also resulted in the decreased biodegradation of PAHs. Four of six biochars significantly increased the concentrations of Σ16PAHs in plant by 30.10-74.22%. Generally, biochars significantly increased the uptake of LMW-PAHs by plant but had little influence on the plant uptake of MMW-PAHs and HMW-PAHs. Three of six biochars notably increased the incremental lifetime cancer risk values based on the exposure of PAHs by vegetable consumption.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Agricultura , Carbón Orgánico/química , Suelo , Verduras/metabolismo
4.
Ecotoxicol Environ Saf ; 215: 112106, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33756293

RESUMEN

Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Contaminación Ambiental , Humanos , Plásticos , Medición de Riesgo , Suelo/química , Verduras/química
5.
Environ Geochem Health ; 42(2): 377-388, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31286342

RESUMEN

A number of remediation measures have been used in paddy fields to alleviate serious cadmium (Cd) contamination, which may pose a public health risk through the food chain. In this study, a field trial was conducted in paddy fields with slight-moderate Cd contamination to investigate the remediation effects of combined remediation measures (CRMs), including the use of Cd-safe rice (Oryza sativa L.) cultivars, water management modes (WMMs), lime application (LA), soil amendment application (SAA), and foliar silicon (Si) fertilizers. Two groups of field trials were designed including CRMs with selenium (Se) and without selenium (non-Se) application. The results show that soil measures (LA + SAA) can increase the soil pH by 0.99 and decrease the soil DTPA-extracted Cd content by 34.19% (p < 0.05). All measures used in the present study significantly decreased the Cd content in husked rice and yield, except for the WMMs; the CRMs achieved the best results, and Se application enhanced the effects of all measures. This study shows that CRMs significantly decreased the Cd content in husked rice by 58.10%; this value increased to 72.69% after Se application (p < 0.05). These results provide useful information for selecting remediation measures in paddy fields with slight-moderate Cd contamination.


Asunto(s)
Cadmio/análisis , Restauración y Remediación Ambiental/métodos , Oryza/química , Selenio/química , Contaminantes del Suelo/análisis , Fertilizantes/análisis , Oryza/crecimiento & desarrollo , Suelo/química
6.
Analyst ; 144(22): 6698-6705, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31599884

RESUMEN

A simple surface-enhanced Raman spectroscopy (SERS) sensor based on an undecorated gold-colloid substrate was developed for the rapid and effective detection of polycyclic aromatic hydrocarbons (PAH). The SERS enhancement of the bare Au nanoparticles for PAH was achieved by adjusting chemical reduction conditions and Cl- content. The strongest SERS response of this system was achieved with 2.0 mL of trisodium citrate (1%) and 80 µL of NaCl (1 M). With this simple SERS sensor, qualitative and quantitative determination of trace-level naphthalene (NaP), phenanthrene (PHE) and pyrene (PYR) were achieved using a portable Raman spectrometer at detection limits of 1.38 µg L-1, 0.23 µg L-1, and 0.45 µg L-1, respectively. Plots of SERS intensity vs. PAH concentrations were linear, with correlation coefficients (R2) ranging from 0.8729 to 0.9994. More importantly, the SERS sensor was able to accurately identify each PAH in complex mixtures. This SERS technique shows great promise for the rapid and direct detection of aromatic hydrocarbons organic pollutants in field.

7.
Water Sci Technol ; 79(6): 1222-1230, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31070602

RESUMEN

This study determined the adsorption of Cd2+ and Pb2+ (100 mg·L-1 of each) in simulated wastewater by biomass xanthates made from starch, chitosan, wheat stalk and corn stalk. The results showed that the adsorption efficiency of Pb2+ and Cd2+ ions followed the order: corn stalk xanthate > wheat stalk xanthate ≥ chitosan xanthate > starch xanthate. The results of kinetic modeling showed that the adsorption process was characterized by physical-chemical adsorption, and that a second-order kinetics equation described the adsorption process well. The optimum conditions for the adsorption of Cd2+ and Pb2+ by corn stalk xanthate were: adsorption time 2 hours, temperature 20-25 °C, and pH 6-8. The results serve as a reference for treating wastewater containing Cd2+ and Pb2+.


Asunto(s)
Cadmio/química , Plomo/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Biomasa , Cadmio/análisis , Concentración de Iones de Hidrógeno , Cinética , Plomo/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
8.
J Environ Sci (China) ; 78: 239-246, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665642

RESUMEN

Removal of polycyclic aromatic hydrocarbons (PAHs) from different soil fractions of contaminated soil was investigated by using activated persulfate oxidation remediation in our research. The results showed that the light fraction, which accounted for only 10% of the soil, contained 30% of the PAHs at a concentration of 4352 mg/kg. The heavy fraction contained more high-molecular-weight PAHs, and the total PAH concentration was 625 mg/kg. After being oxidized, the removal rate of PAHs was 39% in the light fraction and nearly 90% in the heavy fraction. Among the different fractions of the heavy fraction, humic acid contained the highest concentration of PAHs, and consequently, the highest removal efficiency of PAHs was also in humic acid. Compared with the light fraction, the heavy fraction has more aromatic compounds and those compounds were broken down during the oxidation process, which may be the removal mechanism involved in the oxidation of high-ring PAHs. Similarly, the enhancement of C=C bonds after oxidation can also explain the poor removal of high-ring PAHs in the light fraction. These results imply that different fractions of soil vary in composition and structure, leading to differences in the distribution and oxidation efficiencies of PAHs.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Oxidación-Reducción , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Sulfatos/química
9.
Environ Geochem Health ; 39(5): 1031-1043, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27599975

RESUMEN

Although human biological indicators have been widely utilized for biomonitoring environmental pollutants in health exposure assessment, the relationship between internal and external exposure has not yet been adequately established. In this study, we collected and analyzed 61 rice, 56 pepper, and 58 soil samples, together with 107 hair, 107 blood, and 107 urine samples from residents living in selected intensive mining areas in China. Concentrations of most of the four elements considered (Pb, Cd, Hg, and Se) exceeded national standards, implying high exposure risk in the study areas. Regression analysis also revealed a correlation (0.33, P < 0.001) between the concentration of Pb in soil and that in human hair (as well as in human blood); to some extent, Pb content in hair and blood could therefore be used to characterize external Pb exposure. The correlation between Hg in rice and in human hair (up to 0.5, P < 0.001) further confirmed a significant indicative effect of human hair for Hg exposure. A significant correlation was also noted between concentrations of some elements in different human samples, for example, between Hg in hair and blood (0.641, P < 0.01) and between Cd in urine and blood (0.339, P < 0.01). To some extent, there could thus be mutual reflectance of the same heavy metal in different samples, with the possibility for complementary use in assessing heavy metal exposure.


Asunto(s)
Biomarcadores Ambientales , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/metabolismo , Contaminación de Alimentos/análisis , Metales Pesados/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Minería , Adulto Joven
10.
J Environ Sci (China) ; 57: 104-109, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28647229

RESUMEN

Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils.


Asunto(s)
Arsénico/análisis , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/análisis , Suelo/química , Proyectos Piloto , Pteris
11.
J Environ Sci (China) ; 41: 202-210, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26969066

RESUMEN

Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended.


Asunto(s)
Arsénico/análisis , Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , China
12.
Environ Monit Assess ; 186(12): 9041-50, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25249043

RESUMEN

Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.


Asunto(s)
Cadmio/química , Durapatita/química , Restauración y Remediación Ambiental/métodos , Plomo/química , Minería , Cloruro de Potasio/química , Contaminantes del Suelo/química , Brassica , Cadmio/análisis , Monitoreo del Ambiente , Contaminación Ambiental , Plomo/análisis , Suelo/química , Contaminantes del Suelo/análisis , Verduras
13.
J Hazard Mater ; 465: 133212, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101012

RESUMEN

Cultivated soil quality is crucial because it directly affects food safety and human health, and rice is of primary concern because of its centrality to global food networks. However, a detailed understanding of cadmium (Cd) geochemical cycling in paddy soils is complicated by the multiple influencing factors present in many rice-growing areas that overlap with industrial centers. This study analyzed the pollution characteristics and health risks of Cd in paddy soils across Hainan Island and identified key influencing factors based on multi-source environmental data and prediction models. Approximately 27.07% of the soil samples exceeded the risk control standard screening value for Cd in China, posing an uncontaminated to moderate contamination risk. Cd concentration and exposure duration contributed the most to non-carcinogenic and carcinogenic risks to children, teens, and adults through ingestion. Among the nine prediction models tested, Extreme Gradient Boosting (XGBoost) exhibited the best performance for Cd prediction with soil properties having the highest importance, followed by climatic variables and topographic attributes. In summary, XGBoost reliably predicted the soil Cd concentrations on tropical islands. Further research should incorporate additional soil properties and environmental variables for more accurate predictions and to comprehensively identify their driving factors and corresponding contribution rates.


Asunto(s)
Oryza , Contaminantes del Suelo , Adulto , Niño , Humanos , Adolescente , Suelo/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Inocuidad de los Alimentos , Oryza/química , China , Medición de Riesgo
14.
Chemosphere ; 358: 142148, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679170

RESUMEN

Although oilseed rape is frequently used as an alternative planting crop in the phytoremediation of cadmium (Cd)-contaminated agricultural land, methods for screening excellent oilseed rape varieties in this regard are inadequate. Herein, we developed a screening method that incorporates Cd accumulation, distribution, and removal, economic output, adaptability to Cd-contaminated agricultural land, and trace element variation. A Cd-adaptability index (Cd-AI) based on 10 agronomic traits was used to measure the adaptability of varieties to Cd-contaminated agricultural land. Moreover, to simplify the evaluation of adaptability, yield, biomass, and pod number with high weightings were selected to construct a discriminant function for Cd-contaminated agricultural land adaptability (correctly classified 94.20%). In a 2 year field trial, we evaluated 225 oilseed rape varieties, among which we identified two promising low-Cd-accumulating and two Cd-remediating varieties. For the low-Cd-accumulating varieties (HuYou17 and DeXingYou558), we obtained grain bioaccumulation factor (BAF) values of 0.07 and 0.08, BAFsoil-stalk values of <1, and economic outputs of RMB 25,054 and 32,292 yuan hm-2, respectively. Similarly, the Cd-remediating varieties (ZaoZa8 and YuYou61) were characterized by BAFsoil-stalk values of 4.65 and 3.61, BAFsoil-grain values of 0.16 and 0.16, Cd removals of 69.02 and 58.25 g hm-2, and economic outputs of RMB 31,189 and 24,962 yuan hm-2, respectively. Compared with the control variety, we detected lower uptakes of multiple trace elements (3-43%) in the low-Cd-accumulating varieties, whereas the Cd-remediating varieties were characterized by 15.40% and 8.30% increases in the accumulation of magnesium and zinc, respectively. Our findings augment the evaluation indices used for evaluating oilseed rape varieties and provide valuable insights from the perspectives of varietal screening and promotional application. The effective varieties identified have application potential for safe production and the remediation of agricultural land without interrupting annual agricultural production, and provide an economically sustainable approach for the utilization of Cd-contaminated agricultural land.


Asunto(s)
Agricultura , Biodegradación Ambiental , Cadmio , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Agricultura/métodos , Brassica napus/metabolismo , Biomasa , Suelo/química
15.
Sci Total Environ ; 916: 170260, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253105

RESUMEN

Mercury (Hg) contamination in aquatic environments presents a significant ecological and human health concern. This study explored the relationship between catchment land use and Hg concentrations within Qinghai Lake sediment, the largest lake in China, situated on the Qinghai-Tibet plateau. The study entailed detailed mapping of Hg sediment concentrations and a subsequent environmental risk assessment. Considering the complex nature of the plateau landform and surface vegetation, the study area was delineated at a 100 km radius centered on Qinghai Lake, which was divided into 30 sectors to quantify relationships between land use and the sediment Hg concentration. The results revealed a mean sediment Hg concentration of 29.91 µg/kg, which was elevated above the background level. Kendall's correlation analysis revealed significant but weak associations between sediment Hg concentrations and three land use types: grassland (rangeland and trees) (rs = 0.27, p < 0.05), crops (rs = -0.37, p < 0.05), and bare ground (rs = -0.25, p < 0.1), suggesting that growing areas of grassland correlated with higher Hg levels in the lake sediment, in contrast to bare ground or crops area, which correlated with lower Hg concentrations. Multiple linear regression models also observed weak negative relationships between bare ground and crops with sediment Hg concentration. This research methodology enhances our understanding of the impact of land use on Hg accumulation in lake sediments and underscores the need for integrated watershed management strategies to mitigate Hg pollution in Qinghai Lake.

16.
Chemosphere ; 350: 140936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159737

RESUMEN

Identifying driving factors is of great significance for understanding the mechanisms of soil pollution. In this study, a data processing method for driving factors was analyzed to explore the genesis of Arsenic (As) pollution in mining areas. The wind field that affects the atmospheric diffusion of pollutants was simulated using the standard k-ε model. Machine learning and GeoDetector methods were used to identify the primary driving factors. The results showed that the prediction performances of the three machine learning models were improved after data processing. The R2 values of random forest (RF), support vector machine, and artificial neural network increased from 0.45, 0.69, and 0.24 to 0.55, 0.76, and 0.52, respectively. The importance of wind increased from 20.85% to 26.22%. The importance of distance to the smelter plant decreased from 43.26% to 33.19% in the RF model. The wind's driving force (q value) increased from 0.057 to 0.235 in GeoDetector. The average value of historical atmospheric dust reached 534.98 mg/kg, indicating that atmospheric deposition was an important pathway for As pollution. The outcome of this study can provide a direction to clarify the mechanisms responsible for soil pollution at the mining area scale.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Minería , Arsénico/análisis , China , Medición de Riesgo
17.
Environ Geochem Health ; 35(3): 271-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22975988

RESUMEN

The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (<2, 2-20, 20-200, >200 µm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC-MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0-4.5 m (layer B) and 6.0-7.5 m (layer C), relatively lower at 1.5-3.0 m (layer A) and 10.5-12.0 m (layer D). At all sampling sites, the silt (2-20 µm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2-3 ring species (86.5-98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20-200 µm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0-7.5 m, increasing with depth; while in deeper sand layer at 10.5-12.0 m, the >200 µm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2-3 ring PAHs were highly concentrated in the small size fraction (<2 and 2-20 µm); the 4-6 ring PAHs showed the highest concentrations in the 2-20 µm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.


Asunto(s)
Coque , Residuos Industriales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Restauración y Remediación Ambiental/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Suelo/química , Contaminantes del Suelo/química
18.
J Hazard Mater ; 443(Pt B): 130388, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444073

RESUMEN

Vanadium (V) contamination of soils poses potential risks to humans and ecosystems. This study was conducted to evaluate the effects of endophyte-assisted phytoremediation and to determine the mechanisms involved in V detoxification and plant growth promotion. Results showed that the endophytic bacterium Serratia marcescens PRE01 could successfully colonize the roots and increase the total V uptake of Pteris vittata by 25.4 %, with higher plant biomass and V accumulation in roots. Endophyte inoculation significantly improved the secretion of phytic, malic, and oxalic acids and accelerated FeVO4 dissolution and subsequent Fe and V uptake in the rhizosphere. Under V stress without inoculation, V removed by shoot uptake, root uptake, and root surface adsorption accounted for 21.76 %, 42.14 %, and 30.93 % of the total V removal efficiency, respectively. To detoxify excess V, PRE01 effectively strengthened the adsorption of V on the root surface, with an increase in its contribution to the total V removal efficiency from 30.93 % to 38.10 %. Furthermore, beneficial endophytes could alleviate oxidative damage caused by V stress by reinforcing the plant antioxidant system and promoting V(V) reduction in root tissues. These findings clearly reveal that inoculation with endophytes is a promising method for modulating multiple strategies to enhance the phytoremediation of V-contaminated soils.


Asunto(s)
Pteris , Humanos , Endófitos , Vanadio , Biodegradación Ambiental , Ecosistema , Suelo
19.
J Hazard Mater ; 448: 130934, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860071

RESUMEN

Soil pollution at steelworks mega-sites has become a severe environmental issue worldwide. However, due to the complex production processes and hydrogeology, the soil pollution distribution at steelworks is still unclear. This study scientifically cognized the distribution characteristics of polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and heavy metals (HMs) at a steelworks mega-site based on multi-source information. Specifically, firstly, 3D distribution and spatial autocorrelation of pollutants were obtained by interpolation model and local indicators of spatial associations (LISA), respectively. Secondly, the characteristics of horizontal distribution, vertical distribution, and spatial autocorrelations of pollutants were identified by combining multi-source information such as production processes, soil layers, and properties of pollutants. Horizontal distribution showed that soil pollution in steelworks mainly occurred in the front end of the steel process chain. Over 47% of PAHs and VOCs pollution area were distributed in coking plants and over 69% of HMs in stockyards. Vertical distribution indicated that HMs, PAHs, and VOCs were enriched in the fill, silt, and clay layers, respectively. Spatial autocorrelation of pollutants was positively correlated with their mobility. This study clarified the soil pollution characteristics at steelworks mega-sites, which can support the investigation and remediation of steelworks mega-sites.

20.
J Hazard Mater ; 443(Pt B): 130290, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335906

RESUMEN

Contamination with energetic compounds (ECs) is common in military sites and poses a great risk to the environment and human health. However, its effects on the soil bacterial communities remain unclear. This study assessed the variations of bacterial communities, co-occurrence patterns, and their influence factors in three types of typical military-contaminated sites (artillery range, military-industrial site, and ammunition destruction site). The results showed that the most polluted sites were ammunition destruction sites, followed by military-industrial sites, whereas pollution in the artillery ranges was minimal. The average concentrations of ECs including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in the study sites ranged 120-1.67 × 105, 20-7.20 × 104, and 180-2.38 × 105 µg/kg, respectively. Bacterial diversity and community structure in military-industrial and ammunition destruction sites were significantly changed, but not in artillery ranges. TNT, pH, and soil moisture are the critical factors affecting bacterial communities in contaminated military sites. Co-occurrence network analysis indicated that the pressure of ECs affected bacterial interactions and microbiota function. Our findings provide new insights into the variations in bacterial communities in EC-contaminated military sites and references for the bioremediation of ECs.


Asunto(s)
Microbiota , Personal Militar , Contaminantes del Suelo , Trinitrotolueno , Humanos , Azocinas/análisis , Azocinas/química , Biodegradación Ambiental , Triazinas/química , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA