Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pacing Clin Electrophysiol ; 44(3): 519-527, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33538337

RESUMEN

BACKGROUND: Multipoint pacing (MPP) in cardiac resynchronization therapy (CRT) activates the left ventricle from two locations, thereby shortening the QRS duration and enabling better resynchronization; however, compared with conventional CRT, MPP reduces battery longevity. On the other hand, electrocardiogram-based optimization using the fusion-optimized intervals (FOI) method achieves more significant reverse remodeling than nominal CRT programming. Our study aimed to determine whether MPP could attain better resynchronization than single-point pacing (SPP) optimized by FOI. METHODS: This prospective study included 32 consecutive patients who successfully received CRT devices with MPP capabilities. After implantation, the QRS duration was measured during intrinsic rhythm and with three pacing configurations: MPP, SPP-FOI, and MPP-FOI. In 14 patients, biventricular activation times (by electrocardiographic imaging, ECGI) were obtained during intrinsic rhythm and for each pacing configuration to validate the findings. Device battery longevity was estimated at the 45-day follow-up. RESULTS: The SPP-FOI method achieved greater QRS shortening than MPP (-56 ± 16 vs. -42 ± 17 ms, p < .001). Adding MPP to the best FOI programming did not result in further shortening (MPP-FOI: -58 ± 14 ms, p = .69). Although biventricular activation times did not differ significantly among the three pacing configurations, only the two FOI configurations achieved significant shortening compared with intrinsic rhythm. The estimated battery longevity was longer with SPP than with MPP (8.1 ± 2.3 vs. 6.3 ± 2.0 years, p = .03). CONCLUSIONS: SPP optimized by FOI resulted in better resynchronization and longer battery duration than MPP.


Asunto(s)
Terapia de Resincronización Cardíaca/métodos , Disfunción Ventricular Izquierda/terapia , Anciano , Ecocardiografía , Suministros de Energía Eléctrica , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Disfunción Ventricular Izquierda/fisiopatología
2.
J Cardiovasc Electrophysiol ; 27(4): 435-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26776725

RESUMEN

INTRODUCTION: Ablation of high dominant frequency (DF) sources in patients with atrial fibrillation (AF) is an effective treatment option for paroxysmal AF. The aim of this study was to evaluate the accuracy of noninvasive estimation of DF and electrical patterns determination by solving the inverse problem of the electrocardiography. METHODS: Four representative AF patients with left-to-right and right-to-left atrial DF patterns were included in the study. For each patient, intracardiac electrograms from both atria were recorded simultaneously together with 67-lead body surface recordings. In addition to clinical recordings, realistic mathematical models of atria and torso anatomy with different DF patterns of AF were used. For both mathematical models and clinical recordings, inverse-computed electrograms were compared to intracardiac electrograms in terms of voltage, phase, and frequency spectrum relative errors. RESULTS: Comparison between intracardiac and inverse computed electrograms for AF patients showed 8.8 ± 4.4% errors for DF, 32 ± 4% for voltage, and 65 ± 4% for phase determination. These results were corroborated by mathematical simulations showing that the inverse problem solution was able to reconstruct the frequency spectrum and the DF maps with relative errors of 5.5 ± 4.1%, whereas the reconstruction of the electrograms or the instantaneous phase presented larger relative errors (i.e., 38 ± 15% and 48 ± 14 % respectively, P < 0.01). CONCLUSIONS: Noninvasive reconstruction of atrial frequency maps can be achieved by solving the inverse problem of electrocardiography with a higher accuracy than temporal distribution patterns.


Asunto(s)
Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Mapeo del Potencial de Superficie Corporal/métodos , Mapeo Epicárdico/métodos , Modelos Cardiovasculares , Pericardio/fisiopatología , Algoritmos , Simulación por Computador , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Front Physiol ; 11: 611266, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584334

RESUMEN

Introduction: Regional differences in activation rates may contribute to the electrical substrates that maintain atrial fibrillation (AF), and estimating them non-invasively may help guide ablation or select anti-arrhythmic medications. We tested whether non-invasive assessment of regional AF rate accurately represents intracardiac recordings. Methods: In 47 patients with AF (27 persistent, age 63 ± 13 years) we performed 57-lead non-invasive Electrocardiographic Imaging (ECGI) in AF, simultaneously with 64-pole intracardiac signals of both atria. ECGI was reconstructed by Tikhonov regularization. We constructed personalized 3D AF rate distribution maps by Dominant Frequency (DF) analysis from intracardiac and non-invasive recordings. Results: Raw intracardiac and non-invasive DF differed substantially, by 0.54 Hz [0.13 - 1.37] across bi-atrial regions (R 2 = 0.11). Filtering by high spectral organization reduced this difference to 0.10 Hz (cycle length difference of 1 - 11 ms) [0.03 - 0.42] for patient-level comparisons (R 2 = 0.62), and 0.19 Hz [0.03 - 0.59] and 0.20 Hz [0.04 - 0.61] for median and highest DF, respectively. Non-invasive and highest DF predicted acute ablation success (p = 0.04). Conclusion: Non-invasive estimation of atrial activation rates is feasible and, when filtered by high spectral organization, provide a moderate estimate of intracardiac recording rates in AF. Non-invasive technology could be an effective tool to identify patients who may respond to AF ablation for personalized therapy.

4.
Circ Arrhythm Electrophysiol ; 13(3): e007700, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078374

RESUMEN

BACKGROUND: It is difficult to noninvasively phenotype atrial fibrillation (AF) in a way that reflects clinical end points such as response to therapy. We set out to map electrical patterns of disorganization and regions of reentrant activity in AF from the body surface using electrocardiographic imaging, calibrated to panoramic intracardiac recordings and referenced to AF termination by ablation. METHODS: Bi-atrial intracardiac electrograms of 47 patients with AF at ablation (30 persistent, 29 male, 63±9 years) were recorded with 64-pole basket catheters and simultaneous 57-lead body surface ECGs. Atrial epicardial electrical activity was reconstructed and organized sites were invasively and noninvasively tracked in 3-dimension using phase singularity. In a subset of 17 patients, sites of AF organization were targeted for ablation. RESULTS: Body surface mapping showed greater AF organization near intracardially detected drivers than elsewhere, both in phase singularity density (2.3±2.1 versus 1.9±1.6; P=0.02) and number of drivers (3.2±2.3 versus 2.7±1.7; P=0.02). Complexity, defined as the number of stable AF reentrant sites, was concordant between noninvasive and invasive methods (r2=0.5; CC=0.71). In the subset receiving targeted ablation, AF complexity showed lower values in those in whom AF terminated than those in whom AF did not terminate (P<0.01). CONCLUSIONS: AF complexity tracked noninvasively correlates well with organized and disorganized regions detected by panoramic intracardiac mapping and correlates with the acute outcome by ablation. This approach may assist in bedside monitoring of therapy or in improving the efficacy of ongoing ablation procedures.


Asunto(s)
Fibrilación Atrial/fisiopatología , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/fisiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/cirugía , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Procesamiento de Señales Asistido por Computador , Factores de Tiempo , Resultado del Tratamiento
5.
Comput Biol Med ; 117: 103593, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072974

RESUMEN

Identification of reentrant activity driving atrial fibrillation (AF) is increasingly important to ablative therapies. The goal of this work is to study how the automatically-classified quality of the electrograms (EGMs) affects reentrant AF driver localization. EGMs from 259 AF episodes obtained from 29 AF patients were recorded using 64-poles basket catheters and were manually classified according to their quality. An algorithm capable of identifying signal quality was developed using time and spectral domain parameters. Electrical reentries were identified in 3D phase maps using phase transform and were compared with those obtained with a 2D activation-based method. Effect of EGM quality was studied by discarding 3D phase reentries detected in regions with low-quality EGMs. Removal of reentries identified by 3D phase analysis in regions with low-quality EGMs improved its performance, increasing the area under the ROC curve (AUC) from 0.69 to 0.80. The EGMs quality classification algorithm showed an accurate performance for EGM classification (AUC 0.94) and reentry detection (AUC 0.80). Automatic classification of EGM quality based on time and spectral signal parameters is feasible and accurate, avoiding the manual labelling. Discard of reentries identified in regions with automatically-detected poor-quality EGMs improved the specificity of the 3D phase-based method for AF driver identification.


Asunto(s)
Fibrilación Atrial , Algoritmos , Fibrilación Atrial/diagnóstico , Técnicas Electrofisiológicas Cardíacas , Humanos
6.
IEEE Trans Med Imaging ; 37(3): 733-740, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28541896

RESUMEN

Electrocardiographic Imaging has become an increasingly used technique for non-invasive diagnosis of cardiac arrhythmias, although the need for medical imaging technology to determine the anatomy hinders its introduction in the clinical practice. This paper explores the ability of a new metric based on the inverse reconstruction quality for the location and orientation of the atrial surface inside the torso. Body surface electrical signals from 31 realistic mathematical models and four AF patients were used to estimate the optimal position of the atria inside the torso. The curvature of the L-curve from the Tikhonov method, which was found to be related to the inverse reconstruction quality, was measured after application of deviations in atrial position and orientation. Independent deviations in the atrial position were solved by finding the maximal L-curve curvature with an error of 1.7 ± 2.4 mm in mathematical models and 9.1 ± 11.5 mm in patients. For the case of independent angular deviations, the error in location by using the L-curve was 5.8±7.1° in mathematical models and 12.4° ± 13.2° in patients. The ability of the L-curve curvature was tested also under superimposed uncertainties in the three axis of translation and in the three axis of rotation, and the error in location was of 2.3 ± 3.2 mm and 6.4° ± 7.1° in mathematical models, and 7.9±10.7 mm and 12.1°±15.5° in patients. The curvature of L-curve is a useful marker for the atrial position and would allow emending the inaccuracies in its location.


Asunto(s)
Electrocardiografía/métodos , Atrios Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Anatómicos , Adulto , Anciano , Algoritmos , Femenino , Humanos , Persona de Mediana Edad
7.
Artículo en Inglés | MEDLINE | ID: mdl-28887361

RESUMEN

BACKGROUND: Phase mapping has become a broadly used technique to identify atrial reentrant circuits for ablative therapy guidance. This work studies the phase mapping process and how the signal nature and its filtering affect the reentrant pattern characterization in electrogram (EGM), body surface potential mapping, and electrocardiographic imaging signals. METHODS AND RESULTS: EGM, body surface potential mapping, and electrocardiographic imaging phase maps were obtained from 17 simulations of atrial fibrillation, atrial flutter, and focal atrial tachycardia. Reentrant activity was identified by singularity point recognition in raw signals and in signals after narrow band-pass filtering at the highest dominant frequency (HDF). Reentrant activity was dominantly present in the EGM recordings only for atrial fibrillation and some atrial flutter propagations patterns, and HDF filtering allowed increasing the reentrant activity detection from 60% to 70% of time in atrial fibrillation in unipolar recordings and from 0% to 62% in bipolar. In body surface potential mapping maps, HDF filtering increased from 10% to 90% the sensitivity, although provoked a residual false reentrant activity ≈30% of time. In electrocardiographic imaging, HDF filtering allowed to increase ≤100% the time with detected rotors, although provoked the apparition of false rotors during 100% of time. Nevertheless, raw electrocardiographic imaging phase maps presented reentrant activity just in atrial fibrillation recordings accounting for ≈80% of time. CONCLUSIONS: Rotor identification is accurate and sensitive and does not require additional signal processing in measured or noninvasively computed unipolar EGMs. Bipolar EGMs and body surface potential mapping do require HDF filtering to detect rotors at the expense of a decreased specificity.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas/métodos , Atrios Cardíacos/fisiopatología , Fibrilación Atrial/fisiopatología , Aleteo Atrial/fisiopatología , Mapeo del Potencial de Superficie Corporal , Electrocardiografía , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
8.
Heart Rhythm ; 14(8): 1224-1233, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28408329

RESUMEN

BACKGROUND: Dominant frequency (DF) and rotor mapping have been proposed as noninvasive techniques to guide localization of drivers maintaining atrial fibrillation (AF). OBJECTIVE: The purpose of this study was to evaluate the robustness of both techniques in identifying atrial drivers noninvasively under the effect of electrical noise or model uncertainties. METHODS: Inverse-computed DFs and phase maps were obtained from 30 different mathematical AF simulations. Epicardial highest dominant frequency (HDF) regions and rotor location were compared with the same inverse-computed measurements after addition of noise to the ECG, size variations of the atria, and linear or angular deviations in the atrial location inside the thorax. RESULTS: Inverse-computed electrograms (EGMs) individually correlated poorly with the original EGMs in the absence of induced uncertainties (0.45 ± 0.12) and were worse with 10-dB noise (0.22 ± 0.11), 3-cm displacement (0.01 ± 0.02), or 36° rotation (0.02 ± 0.03). However, inverse-computed HDF regions showed robustness against induced uncertainties: from 82% ± 18% match for the best conditions, down to 73% ± 23% for 10-dB noise, 77% ± 21% for 5-cm displacement, and 60% ± 22% for 36° rotation. The distance from the inverse-computed rotor to the original rotor was also affected by uncertainties: 0.8 ± 1.61 cm for the best conditions, 2.4 ± 3.6 cm for 10-dB noise, 4.3 ± 3.2 cm for 4-cm displacement, and 4.0 ± 2.1 cm for 36° rotation. Restriction of rotor detections to the HDF area increased rotor detection accuracy from 4.5 ± 4.5 cm to 3.2 ± 3.1 cm (P <.05) with 0-dB noise. CONCLUSION: The combination of frequency and phase-derived measurements increases the accuracy of noninvasive localization of atrial rotors driving AF in the presence of noise and uncertainties in atrial location or size.


Asunto(s)
Fibrilación Atrial/diagnóstico , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Atrios Cardíacos/fisiopatología , Imagenología Tridimensional , Modelación Específica para el Paciente , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/cirugía , Técnicas Electrofisiológicas Cardíacas/métodos , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Reproducibilidad de los Resultados
9.
Ann Biomed Eng ; 44(8): 2364-2376, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26850022

RESUMEN

Burden of atrial fibrillation (AF) can be reduced by ablation of sources of electrical impulses driving AF but driver identification is still challenging. This study presents a new methodology based on causality analysis that allows identifying the hierarchically dominant areas driving AF. Identification of dominant propagation patterns was achieved by computing causal relations between intracardiac multi-electrode catheter recordings of four paroxysmal AF patients during sinus rhythm, pacing and AF. In addition, realistic mathematical models of the atria during AF were used to validate the methodology both in the presence and absence of dominant frequency (DF) gradients. During electrical pacing, sources of propagation patterns detected by causality analysis were consistent with the location of the stimulating catheter. During AF, propagation patterns presented temporal variability, but a dominant direction accounted for significantly more propagations than other directions (49 ± 15% vs. 14 ± 13% or less, p < 0.01). Both in patients with a DF gradient and in mathematical models, causal maps allowed the identification of sites responsible for maintenance of AF. Causal maps allowed the identification of atrial dominant sites. In particular, causality analysis resulted in stable dominant cause-effect propagation directions during AF and could serve as a guide for performing ablation procedures in AF patients.


Asunto(s)
Fibrilación Atrial/fisiopatología , Técnicas Electrofisiológicas Cardíacas , Modelos Cardiovasculares , Femenino , Humanos , Masculino
11.
Front Physiol ; 7: 466, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790158

RESUMEN

The inverse problem of electrocardiography is usually analyzed during stationary rhythms. However, the performance of the regularization methods under fibrillatory conditions has not been fully studied. In this work, we assessed different regularization techniques during atrial fibrillation (AF) for estimating four target parameters, namely, epicardial potentials, dominant frequency (DF), phase maps, and singularity point (SP) location. We use a realistic mathematical model of atria and torso anatomy with three different electrical activity patterns (i.e., sinus rhythm, simple AF, and complex AF). Body surface potentials (BSP) were simulated using Boundary Element Method and corrupted with white Gaussian noise of different powers. Noisy BSPs were used to obtain the epicardial potentials on the atrial surface, using 14 different regularization techniques. DF, phase maps, and SP location were computed from estimated epicardial potentials. Inverse solutions were evaluated using a set of performance metrics adapted to each clinical target. For the case of SP location, an assessment methodology based on the spatial mass function of the SP location, and four spatial error metrics was proposed. The role of the regularization parameter for Tikhonov-based methods, and the effect of noise level and imperfections in the knowledge of the transfer matrix were also addressed. Results showed that the Bayes maximum-a-posteriori method clearly outperforms the rest of the techniques but requires a priori information about the epicardial potentials. Among the purely non-invasive techniques, Tikhonov-based methods performed as well as more complex techniques in realistic fibrillatory conditions, with a slight gain between 0.02 and 0.2 in terms of the correlation coefficient. Also, the use of a constant regularization parameter may be advisable since the performance was similar to that obtained with a variable parameter (indeed there was no difference for the zero-order Tikhonov method in complex fibrillatory conditions). Regarding the different targets, DF and SP location estimation were more robust with respect to pattern complexity and noise, and most algorithms provided a reasonable estimation of these parameters, even when the epicardial potentials estimation was inaccurate. Finally, the proposed evaluation procedure and metrics represent a suitable framework for techniques benchmarking and provide useful insights for the clinical practice.

12.
Heart Rhythm ; 13(12): 2358-2365, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27569443

RESUMEN

BACKGROUND: Atrial remodeling as a result of long-standing persistent atrial fibrillation (AF) induces substrate modifications that lead to different perpetuation mechanisms than in paroxysmal AF and a reduction in the efficacy of antiarrhythmic treatments. OBJECTIVE: The purpose of this study was to identify the ionic current modifications that could destabilize reentries during chronic AF and serve to personalize antiarrhythmic strategies. METHODS: A population of 173 mathematical models of remodeled human atrial tissue with realistic intersubject variability was developed based on action potential recordings of 149 patients diagnosed with AF. The relationship of each ionic current with AF maintenance and the dynamics of functional reentries (rotor meandering, dominant frequency) were evaluated by means of 3-dimensional simulations. RESULTS: Self-sustained reentries were maintained in 126 (73%) of the simulations. AF perpetuation was associated with higher expressions of INa and ICaL (P <.01), with no significant differences in the remaining currents. ICaL blockade promoted AF extinction in 30% of these 126 models. The mechanism of AF termination was related with collisions between rotors because of an increase in rotor meandering (1.71 ± 2.01cm2) and presented an increased efficacy in models with a depressed INa (P <.01). CONCLUSION: Mathematical simulations based on a population of models representing intersubject variability allow the identification of ionic mechanisms underlying rotor dynamics and the definition of new personalized pharmacologic strategies. Our results suggest that the underlying mechanism of the diverging success of ICaL block as an antiarrhythmic strategy is dependent on the basal availability of sodium and calcium ion channel conductivities.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial , Canales de Calcio/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/fisiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Remodelación Atrial , Simulación por Computador , Humanos , Modelos Cardiovasculares
13.
Methods Mol Biol ; 1246: 217-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25417089

RESUMEN

Cardiac arrhythmias are an increasingly present in developed countries and represent a major health and economic burden. The occurrence of cardiac arrhythmias is closely linked to the electrical function of the heart. Consequently, the analysis of the electrical signal generated by the heart tissue, either recorded invasively or noninvasively, provides valuable information for the study of cardiac arrhythmias. In this chapter, novel cardiac signal analysis techniques that allow the study and diagnosis of cardiac arrhythmias are described, with emphasis on cardiac mapping which allows for spatiotemporal analysis of cardiac signals.Cardiac mapping can serve as a diagnostic tool by recording cardiac signals either in close contact to the heart tissue or noninvasively from the body surface, and allows the identification of cardiac sites responsible of the development or maintenance of arrhythmias. Cardiac mapping can also be used for research in cardiac arrhythmias in order to understand their mechanisms. For this purpose, both synthetic signals generated by computer simulations and animal experimental models allow for more controlled physiological conditions and complete access to the organ.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Procesamiento de Señales Asistido por Computador , Estadística como Asunto/métodos , Electrocardiografía , Humanos , Modelos Cardiovasculares , Imagen Molecular , Fenómenos Ópticos
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3783-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737117

RESUMEN

Ablation of electrical drivers during atrial fibrillation (AF) has been proved as an effective therapy to prevent recurrence of fibrillatory episodes. This study presents a new methodology based on causality analysis that is able to identify the hierarchical dominance of atrial areas driving AF. Realistic mathematical models of the atrial electrical activity during AF were used to assess the validity of our method. Identification of the dominant atrial propagation patterns was achieved by computing causal relations between multiple electrogram signals. The causal relationships between atrial areas during the fibrillatory processes were summarized into a recurrence map, highlighting the hierarchy and dominant areas. Recurrence maps computed from causality analysis allowed the identification of sites responsible for maintenance of the arrhythmia. These maps were able to locate the position of the atrial driver in fibrillatory processes with a single rotor, with 2 rotors or with several drivers. Additionally, the correspondence between the nodal values of the recurrence map and the distance to the rotor core has been established. Causal analysis consistently estimated propagation patterns and location of atrial drivers during AF. This methodology could guide ablation procedures in AF patients.


Asunto(s)
Fibrilación Atrial/fisiopatología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Potenciales de la Membrana , Modelos Cardiovasculares , Contracción Miocárdica
15.
Heart Rhythm ; 11(9): 1584-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24846374

RESUMEN

BACKGROUND: Ablation is an effective therapy in patients with atrial fibrillation (AF) in which an electrical driver can be identified. OBJECTIVE: The aim of this study was to present and discuss a novel and strictly noninvasive approach to map and identify atrial regions responsible for AF perpetuation. METHODS: Surface potential recordings of 14 patients with AF were recorded using a 67-lead recording system. Singularity points (SPs) were identified in surface phase maps after band-pass filtering at the highest dominant frequency (HDF). Mathematical models of combined atria and torso were constructed and used to investigate the ability of surface phase maps to estimate rotor activity in the atrial wall. RESULTS: The simulations show that surface SPs originate at atrial SPs, but not all atrial SPs are reflected at the surface. Stable SPs were found in AF signals during 8.3% ± 5.7% vs. 73.1% ± 16.8% of the time in unfiltered vs. HDF-filtered patient data, respectively (P < .01). The average duration of each rotational pattern was also lower in unfiltered than in HDF-filtered AF signals (160 ± 43 ms vs. 342 ± 138 ms; P < .01), resulting in 2.8 ± 0.7 rotations per rotor. Band-pass filtering reduced the apparent meandering of surface HDF rotors by reducing the effect of the atrial electrical activity occurring at different frequencies. Torso surface SPs representing HDF rotors during AF were reflected at specific areas corresponding to the fastest atrial location. CONCLUSION: Phase analysis of surface potential signals after HDF filtering during AF shows reentrant drivers localized to either the left atrium or the right atrium, helping in localizing ablation targets.


Asunto(s)
Fibrilación Atrial/cirugía , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/instrumentación , Atrios Cardíacos/cirugía , Sistema de Conducción Cardíaco/cirugía , Adulto , Anciano , Fibrilación Atrial/fisiopatología , Diseño de Equipo , Femenino , Estudios de Seguimiento , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Masculino , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA