Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 146(12): 8071-8085, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38492239

RESUMEN

The FET protein family, comprising FUS, EWS, and TAF15, plays crucial roles in mRNA maturation, transcriptional regulation, and DNA damage response. Clinically, they are linked to Ewing family tumors and neurodegenerative diseases such as amyotrophic lateral sclerosis. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses a portion of the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion protein modifies transcriptional programs and disrupts native EWS functions, such as splicing. The exact role of the intrinsically disordered EWSLCD remains a topic of active investigation, but its ability to phase separate and form biomolecular condensates is believed to be central to EWS::FLI1's oncogenic properties. Here, we used paramagnetic relaxation enhancement NMR, microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of the EWSLCD. Our NMR data and mutational analysis suggest that a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. MD simulations revealed that the tyrosine-rich termini exhibit compact conformations with unique contact networks and provided critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular). These findings enhance our understanding of FET proteins' condensate-forming capabilities and underline differences between EWS, FUS, and TAF15.


Asunto(s)
Sarcoma de Ewing , Factores Asociados con la Proteína de Unión a TATA , Humanos , Proteína EWS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Separación de Fases , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Proteínas/metabolismo , Tirosina , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo
2.
Biopolymers ; 114(5): e23536, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929870

RESUMEN

EWS is a member of the FET family of RNA/DNA binding proteins that regulate crucial phases of nucleic acid metabolism. EWS comprises an N-terminal low-complexity domain (LCD) and a C-terminal RNA-binding domain (RBD). The RBD is further divided into three RG-rich regions, which flank an RNA-recognition motif (RRM) and a zinc finger (ZnF) domain. Recently, EWS was shown to regulate R-loops in Ewing sarcoma, a pediatric bone and soft-tissue cancer in which a chromosomal translocation fuses the N-terminal LCD of EWS to the C-terminal DNA binding domain of the transcription factor FLI1. Though EWS was shown to directly bind R-loops, the binding mechanism was not elucidated. In the current study, the RBD of EWS was divided into several constructs, which were subsequently assayed for binding to various nucleic acid structures expected to form at R-loops, including RNA stem-loops, DNA G-quadruplexes, and RNA:DNA hybrids. EWS interacted with all three nucleic acid structures with varying affinities and multiple domains contributed to binding each substrate. The RRM and RG2 region appear to bind nucleic acids promiscuously while the ZnF displayed more selectivity for single-stranded structures. With these results, the structural underpinnings of EWS recognition and binding of R-loops and other nucleic acid structures is better understood.


Asunto(s)
Ácidos Nucleicos , Proteínas de Unión al ARN , Humanos , Niño , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/química , Proteína EWS de Unión a ARN/metabolismo , Proteínas de Unión al ADN , ADN , ARN , Línea Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 116(9): 3562-3571, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808748

RESUMEN

The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q n ) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington's disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ7, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated [Formula: see text] oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 µs, Kdiss ∼ 0.1 M) that goes on to form a tetramer ([Formula: see text] µs; Kdiss ∼ 22 µM), or exchanges with a "nonproductive" dimer that does not oligomerize further (τex ∼ 400 µs; Kdiss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3-17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D2 symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.


Asunto(s)
Amiloide/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Amiloide/química , Amiloide/ultraestructura , Cristalografía por Rayos X , Citoesqueleto/química , Citoesqueleto/genética , Exones/genética , Proteína Huntingtina/química , Proteína Huntingtina/ultraestructura , Enfermedad de Huntington/patología , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Polímeros/química , Dominios Proteicos/genética , Multimerización de Proteína/genética , Relación Estructura-Actividad
4.
Proc Natl Acad Sci U S A ; 112(29): 8817-23, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26124125

RESUMEN

The prototypical chaperonin GroEL assists protein folding through an ATP-dependent encapsulation mechanism. The details of how GroEL folds proteins remain elusive, particularly because encapsulation is not an absolute requirement for successful re/folding. Here we make use of a metastable model protein substrate, comprising a triple mutant of Fyn SH3, to directly demonstrate, by simultaneous analysis of three complementary NMR-based relaxation experiments (lifetime line broadening, dark state exchange saturation transfer, and Carr-Purcell-Meinboom-Gill relaxation dispersion), that apo GroEL accelerates the overall interconversion rate between the native state and a well-defined folding intermediate by about 20-fold, under conditions where the "invisible" GroEL-bound states have occupancies below 1%. This is largely achieved through a 500-fold acceleration in the folded-to-intermediate transition of the protein substrate. Catalysis is modulated by a kinetic deuterium isotope effect that reduces the overall interconversion rate between the GroEL-bound species by about 3-fold, indicative of a significant hydrophobic contribution. The location of the GroEL binding site on the folding intermediate, mapped from (15)N, (1)HN, and (13)Cmethyl relaxation dispersion experiments, is composed of a prominent, surface-exposed hydrophobic patch.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Animales , Isótopos de Carbono , Pollos , Cinética , Modelos Moleculares , Isótopos de Nitrógeno , Unión Proteica , Conformación Proteica , Dominios Homologos src
5.
Biochemistry ; 56(7): 903-906, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28156097

RESUMEN

The interaction of two folding intermediate mimetics of the model protein substrate Fyn SH3 with the chaperonin GroEL, a supramolecular foldase/unfoldase machine, has been investigated by 15N relaxation-based nuclear magnetic resonance spectroscopy (lifetime line broadening, dark state exchange saturation transfer, and relaxation dispersion). The two mimetics comprise C-terminal truncations of wild-type and triple-mutant (A39V/N53P/V55L) Fyn SH3 in which the C-terminal strand of the SH3 domain is unfolded, while preserving the remaining domain structure. Quantitative analysis of the data reveals that a mobile state of the SH3 domain confined and tethered within the cavity of GroEL, possibly through interactions with the disordered, methionine-rich C-terminal tail(s), can be detected, and that the native state of the folding intermediate mimetics is stabilized by both confinement within and binding to apo GroEL. These data provide a basis for understanding the passive activity of GroEL as a foldase/unfoldase: the unfolded state, in the absence of hydrophobic GroEL-binding consensus sequences, is destabilized within the cavity because of its larger radius of gyration compared to that of the folding intermediate, while the folding intermediate is stabilized relative to the native state because of exposure of a hydrophobic patch that favors GroEL binding.


Asunto(s)
Chaperonina 60/química , Pliegue de Proteína , Proteínas Proto-Oncogénicas c-fyn/química , Dominios Homologos src , Chaperonina 60/metabolismo , Espectroscopía de Resonancia Magnética , Mutación , Isótopos de Nitrógeno , Conformación Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(28): 11361-6, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798407

RESUMEN

The mechanism whereby the prototypical chaperonin GroEL performs work on substrate proteins has not yet been fully elucidated, hindered by lack of detailed structural and dynamic information on the bound substrate. Previous investigations have produced conflicting reports on the state of GroEL-bound polypeptides, largely due to the transient and dynamic nature of these complexes. Here, we present a unique approach, based on combined analysis of four complementary relaxation-based NMR experiments, to probe directly the "dark" NMR-invisible state of the model, intrinsically disordered, polypeptide amyloid ß (Aß40) bound to GroEL. The four NMR experiments, lifetime line-broadening, dark-state exchange saturation transfer, relaxation dispersion, and small exchange-induced chemical shifts, are dependent in different ways on the overall exchange rates and populations of the free and bound states of the substrate, as well as on residue-specific dynamics and structure within the bound state as reported by transverse magnetization relaxation rates and backbone chemical shifts, respectively. Global fitting of all the NMR data shows that the complex is transient with a lifetime of <1 ms, that binding involves two predominantly hydrophobic segments corresponding to predicted GroEL consensus binding sequences, and that the structure of the bound polypeptide remains intrinsically and dynamically disordered with minimal changes in secondary structure propensity relative to the free state. Our results establish a unique method to observe NMR-invisible dynamic states of GroEL-bound substrates and to describe at atomic resolution the events between substrate binding and encapsulation that are crucial for understanding the normal and stress-related metabolic function of chaperonins.


Asunto(s)
Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Chaperonina 60/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Sondas Moleculares , Unión Proteica , Estructura Secundaria de Proteína
7.
Angew Chem Int Ed Engl ; 54(38): 11157-61, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26352026

RESUMEN

The energetic and volumetric properties of a three-state protein folding system, comprising a metastable triple mutant of the Fyn SH3 domain, have been investigated using pressure-dependent (15) N-relaxation dispersion NMR from 1 to 2500 bar. Changes in partial molar volumes (ΔV) and isothermal compressibilities (ΔκT ) between all the states along the folding pathway have been determined to reasonable accuracy. The partial volume and isothermal compressibility of the folded state are 100 mL mol(-1) and 40 µL mol(-1) bar(-1) , respectively, higher than those of the unfolded ensemble. Of particular interest are the findings related to the energetic and volumetric properties of the on-pathway folding intermediate. While the latter is energetically close to the unfolded state, its volumetric properties are similar to those of the folded protein. The compressibility of the intermediate is larger than that of the folded state reflecting the less rigid nature of the former relative to the latter.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Presión , Pliegue de Proteína
8.
Angew Chem Int Ed Engl ; 53(39): 10345-9, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25130489

RESUMEN

Many details pertaining to the formation and interactions of protein aggregates associated with neurodegenerative diseases are invisible to conventional biophysical techniques. We recently introduced (15)N dark-state exchange saturation transfer (DEST) and (15)N lifetime line-broadening to study solution backbone dynamics and position-specific binding probabilities for amyloidâ€…ß (Aß) monomers in exchange with large (2-80 MDa) protofibrillar Aß aggregates. Here we use (13)C(methyl)DEST and lifetime line-broadening to probe the interactions and dynamics of methyl-bearing side chains in the Aß-protofibril-bound state. We show that all methyl groups of Aß40 populate direct-contact bound states with a very fast effective transverse relaxation rate, indicative of side-chain-mediated direct binding to the protofibril surface. The data are consistent with position-specific enhancements of (13)C(methyl)-R2(tethered) values in tethered states, providing further insights into the structural ensemble of the protofibril-bound state.


Asunto(s)
Péptidos beta-Amiloides/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Isótopos de Carbono/química , Cinética , Datos de Secuencia Molecular , Isótopos de Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Dominios y Motivos de Interacción de Proteínas
9.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585848

RESUMEN

RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. SERBP1 is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. Using a proteomics approach followed by functional analysis, we defined SERBP1's interactome. We uncovered novel SERBP1 roles in splicing, cell division, and ribosomal biogenesis and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's disease brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

11.
Structure ; 31(2): 121-122, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736295

RESUMEN

In this issue of Structure, Wang et al. investigate the interplay between folded and disordered regions of the SARS-CoV-2 non-structural protein 1 (Nsp1) that promotes the suppression of host protein translation. Their investigation will lead to novel avenues to therapeutically target critical viral functions necessary for host immune-response suppression.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/química
12.
Biomolecules ; 13(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37189414

RESUMEN

Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have previously demonstrated that WT cl-Par-4 attains a stable, compact, and helical conformation in the presence of a high level of salt at physiological pH. Here, we show that the D313K protein attains a similar conformation as the WT in the presence of salt, but at an approximately two times lower salt concentration. This establishes that the substitution of a basic residue for an acidic residue at position 313 alleviates inter-helical charge repulsion between dimer partners and helps to stabilize the structural conformation.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Neoplasias , Masculino , Humanos , Conformación Proteica , Modelos Moleculares , Genes Supresores de Tumor , Mutagénesis Sitio-Dirigida , Proteínas Intrínsecamente Desordenadas/química , Dicroismo Circular
13.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961424

RESUMEN

The FET family proteins, which includes FUS, EWS, and TAF15, are RNA chaperones instrumental in processes such as mRNA maturation, transcriptional regulation, and the DNA damage response. These proteins have clinical significance: chromosomal rearrangements in FET proteins are implicated in Ewing family tumors and related sarcomas. Furthermore, point mutations in FUS and TAF15 are associated with neurodegenerative conditions like amyotrophic lateral sclerosis and frontotemporal lobar dementia. The fusion protein EWS::FLI1, the causative mutation of Ewing sarcoma, arises from a genomic translocation that fuses the low-complexity domain (LCD) of EWS (EWSLCD) with the DNA binding domain of the ETS transcription factor FLI1. This fusion not only alters transcriptional programs but also hinders native EWS functions like splicing. However, the precise function of the intrinsically disordered EWSLCD is still a topic of active investigation. Due to its flexible nature, EWSLCD can form transient interactions with itself and other biomolecules, leading to the formation of biomolecular condensates through phase separation - a mechanism thought to be central to the oncogenicity of EWS::FLI1. In our study, we used paramagnetic relaxation enhancement NMR, analytical ultracentrifugation, light microscopy, and all-atom molecular dynamics (MD) simulations to better understand the self-association and phase separation tendencies of EWSLCD. Our aim was to elucidate the molecular events that underpin EWSLCD-mediated biomolecular condensation. Our NMR data suggest tyrosine residues primarily drive the interactions vital for EWSLCD phase separation. Moreover, a higher density and proximity of tyrosine residues amplify the likelihood of condensate formation. Atomistic MD simulations and hydrodynamic experiments revealed that the tyrosine-rich N and C-termini tend to populate compact conformations, establishing unique contact networks, that are connected by a predominantly extended, tyrosine-depleted, linker region. MD simulations provide critical input on the relationship between contacts formed within a single molecule (intramolecular) and inside the condensed phase (intermolecular), and changes in protein conformations upon condensation. These results offer deeper insights into the condensate-forming abilities of the FET proteins and highlights unique structural and functional nuances between EWS and its counterparts, FUS and TAF15.

14.
Elife ; 122023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266578

RESUMEN

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Asunto(s)
Neoplasias Cerebelosas , Rabdomiosarcoma Embrionario , Animales , Carcinogénesis , Mutación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Rabdomiosarcoma Embrionario/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Biomol NMR Assign ; 16(1): 67-73, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994941

RESUMEN

The RNA-binding protein EWS is a multifunctional protein with roles in the regulation of transcription and RNA splicing. It is one of the FET (FUS, EWS and TAF15) family of RNA binding proteins that contain an intrinsically disordered, low-complexity N-terminal domain. The FET family proteins are prone to chromosomal translocations, often fusing their low-complexity domain with a transcription factor derived DNA-binding domain, that are oncogenic drivers in several leukemias and sarcomas. The fusion protein disrupts the normal function of cells through non-canonical DNA binding and alteration of normal transcriptional programs. However, the exact mechanism for how the intrinsically disordered domain contributes to aberrant DNA binding and abnormal transcription is unknown. The purification and 1H, 13C, and 15N backbone resonance assignments of the amino terminal domain comprising 264 residues of EWS is described. This segment is common to all known EWS-fusions that are the hallmark of the pediatric cancer Ewing sarcoma. This domain is intrinsically disordered and features significant sequence degeneracy resulting in spectra with poor chemical shift dispersion. To alleviate this problem, the domain was divided into three overlapping fragments, reducing the complexity of the spectra and enabling almost complete backbone resonance assignment of the full domain. These solution NMR chemical shift assignments represent the first steps towards understanding, at atomic resolution, how the low-complexity domain of EWS contributes to the aberrant functions of its oncogenic fusion proteins.


Asunto(s)
ADN , Proteína Proto-Oncogénica c-fli-1 , Niño , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteínas de Fusión Oncogénica , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
16.
Biochemistry ; 50(14): 2748-55, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21395300

RESUMEN

Bacteriocins are bacterial peptides with specific activity against competing species. They hold great potential as natural preservatives and for their probiotic effects. We show here nuclear magnetic resonance-based evidence that glycocin F, a 43-amino acid bacteriocin from Lactobacillus plantarum, contains two ß-linked N-acetylglucosamine moieties, attached via side chain linkages to a serine via oxygen, and to a cysteine via sulfur. The latter linkage is novel and has helped to establish a new type of post-translational modification, the S-linked sugar. The peptide conformation consists primarily of two α-helices held together by a pair of nested disulfide bonds. The serine-linked sugar is positioned on a short loop sequentially connecting the two helices, while the cysteine-linked sugar presents at the end of a long disordered C-terminal tail. The differing chemical and conformational stabilities of the two N-actetylglucosamine moieties provide clues about the possible mode of action of this bacteriostatic peptide.


Asunto(s)
Bacteriocinas/química , Espectroscopía de Resonancia Magnética/métodos , Conformación Proteica , Estructura Secundaria de Proteína , Acetilglucosamina/química , Bacteriocinas/metabolismo , Cisteína/química , Disulfuros/química , Glicosilación , Cinética , Lactobacillus plantarum/metabolismo , Modelos Moleculares , Oxígeno/química , Procesamiento Proteico-Postraduccional , Serina/química , Azufre/química
17.
J Vis Exp ; (175)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34633390

RESUMEN

Intrinsically disordered proteins and intrinsically disordered regions within proteins make up a large and functionally significant part of the human proteome. The highly flexible nature of these sequences allows them to form weak, long-range, and transient interactions with diverse biomolecular partners. Specific yet low-affinity interactions promote promiscuous binding and enable a single intrinsically disordered segment to interact with a multitude of target sites. Because of the transient nature of these interactions, they can be difficult to characterize by structural biology methods that rely on proteins to form a single, predominant conformation. Paramagnetic relaxation enhancement NMR is a useful tool for identifying and defining the structural underpinning of weak and transient interactions. A detailed protocol for using paramagnetic relaxation enhancement to characterize the lowly-populated encounter complexes that form between intrinsically disordered proteins and their protein, nucleic acid, or other biomolecular partners is described.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
18.
Biomol NMR Assign ; 15(2): 461-466, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34436734

RESUMEN

SERBP1 is a multifunctional mRNA-binding protein that has been shown to play a regulatory role in a number of biological processes such as thrombosis, DNA damage repair, and the cellular response to nutrient deprivation. Additionally, SERBP1 is upregulated in glioblastoma, leukemia as well as liver, prostrate and ovarian cancers where it has been implicated in metastatic disease and poor patient outcomes. SERBP1 binds target mRNA, stabilizing and regulating the post-translational expression of the transcript. Since SERBP1 lacks canonical RNA-binding motifs such as RRM domains or zinc fingers, its target recognition and binding mechanisms are not well understood. Recent reports suggest that it is capable of recognizing both RNA sequence motifs and structured domains. Here we report the production and purification of the intrinsically disordered C-terminal domain of SERBP1, the assignment of the 1H, 13C, 15N backbone resonances of the protein by solution-state NMR, and secondary structure predictions. We show that the protein is not entirely disordered and identify an α-helix that was stable under the experimental conditions. This work is the first step toward understanding the structural basis underpinning the molecular mechanisms of SERBP1 functions, particularly interactions with mRNA targets.


Asunto(s)
Proteínas de Unión al ARN
19.
Front Mol Biosci ; 8: 744707, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631798

RESUMEN

RNA binding proteins (RBPs) are essential for critical biological processes such as translation regulation and mRNA processing, and misfunctions of these proteins are associated with diseases such as cancer and neurodegeneration. SERBP1 (SERPINE1 mRNA Binding Protein 1) is an RBP that comprises two RG/RGG repeat regions yet lacks other recognizable RNA-binding motifs. It is involved in mRNA maturation, and translational regulation. It was initially identified as a hyaluronic acid binding protein, but recent studies have identified central roles for SERBP1 in brain function and development, especially neurogenesis and synaptogenesis. SERBP1 regulates One-carbon metabolism and epigenetic modification of histones, and increased SERBP1 expression in cancers such as leukemia, ovarian, prostate, liver and glioblastoma is correlated with poor patient outcomes. Despite these important regulatory roles for SERBP1, little is known about its structural and dynamic properties, nor about the molecular mechanisms governing its interaction with mRNA. Here, we define SERBP1 as an intrinsically disordered protein, containing highly conserved elements that were shown to be functionally important. The RNA binding activity of SERBP1 was explored using solution NMR and other biophysical techniques. The outcome of these experiments revealed that SERBP1 preferentially samples compact conformations including a central, stable α-helix and show that SERBP1 recognizes G-rich RNA sequences at the C-terminus involving the RGG box and neighboring residues. Despite the role in RNA recognition, the RGG boxes do not seem to stabilize the central helix and the central helix does not participate in RNA binding. Further, SERBP1 undergoes liquid-liquid phase separation, mediated by salt and RNA, and both RGG boxes are necessary for the efficient formation of condensed phases. Together, these results provide a foundation for understanding the molecular mechanisms of SERBP1 functions in physiological and pathological processes.

20.
Proteins ; 78(11): 2433-49, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20602362

RESUMEN

Prostate apoptosis response factor-4 (Par-4) is a pro-apoptotic and tumor-suppressive protein. A highly conserved heptad repeat sequence at the Par-4 C-terminus suggests the presence of a leucine zipper (LZ). This C-terminal region is essential for Par-4 self-association and interaction with various effector proteins. We have used nuclear magnetic resonance (NMR) spectroscopy to fully assign the chemical shift resonances of a peptide comprising the LZ domain of Par-4 at neutral pH. Further, we have investigated the properties of the Par-4 LZ domain and two point mutants under a variety of conditions using NMR, circular dichroism (CD), light scattering, and bioinformatics. Results indicate an environment-dependent conformational equilibrium between a partially ordered monomer (POM) and a predominantly coiled coil dimer (CCD). The combination of techniques used allows the time scales of the equilibrium to be probed and also helps to identify features of the amino acid sequence that may influence the equilibrium.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Leucina Zippers , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cromatografía en Gel , Dicroismo Circular , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Luz , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Dispersión de Radiación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA