Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 15: 682, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25128405

RESUMEN

BACKGROUND: Bats are a major source of new and emerging viral diseases. Despite the fact that bats carry and shed highly pathogenic viruses including Ebola, Nipah and SARS, they rarely display clinical symptoms of infection. Host factors influencing viral replication are poorly understood in bats and are likely to include both pre- and post-transcriptional regulatory mechanisms. MicroRNAs are a major mechanism of post-transcriptional gene regulation, however very little is known about them in bats. RESULTS: This study describes 399 microRNAs identified by deep sequencing of small RNA isolated from tissues of the Black flying fox, Pteropus alecto, a confirmed natural reservoir of the human pathogens Hendra virus and Australian bat lyssavirus. Of the microRNAs identified, more than 100 are unique amongst vertebrates, including a subset containing mutations in critical seed regions. Clusters of rapidly-evolving microRNAs were identified, as well as microRNAs predicted to target genes involved in antiviral immunity, the DNA damage response, apoptosis and autophagy. Closer inspection of the predicted targets for several highly supported novel miRNA candidates suggests putative roles in host-virus interaction. CONCLUSIONS: MicroRNAs are likely to play major roles in regulating virus-host interaction in bats, via dampening of inflammatory responses (limiting the effects of immunopathology), and directly limiting the extent of viral replication, either through restricting the availability of essential factors or by controlling apoptosis. Characterisation of the bat microRNA repertoire is an essential step towards understanding transcriptional regulation during viral infection, and will assist in the identification of mechanisms that enable bats to act as natural virus reservoirs. This in turn will facilitate the development of antiviral strategies for use in humans and other species.


Asunto(s)
Quirópteros/genética , MicroARNs/genética , Animales , Secuencia de Bases , Sitios de Unión , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Secuencias Invertidas Repetidas , Masculino , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Familia de Multigenes , Interferencia de ARN , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico
2.
J Proteome Res ; 12(10): 4449-61, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24007199

RESUMEN

The secretion of certain proteins in Porphyromonas gingivalis is dependent on a C-terminal domain (CTD). After secretion, the CTD is cleaved prior to extensive modification of the mature protein, probably with lipopolysaccharide, therefore enabling attachment to the cell surface. In this study, bioinformatic analyses of the CTD demonstrated the presence of three conserved sequence motifs. These motifs were used to construct Hidden Markov Models (HMMs) that predicted 663 CTD-containing proteins in 21 fully sequenced species of the Bacteroidetes phylum, while no CTD-containing proteins were predicted in species outside this phylum. Further HMM searching of Cytophaga hutchinsonii led to a total of 171 predicted CTD proteins in that organism alone. Proteomic analyses of membrane fractions and culture fluid derived from P. gingivalis and four other species containing predicted CTDs (Parabacteroides distasonis, Prevotella intermedia, Tannerella forsythia, and C. hutchinsonii) demonstrated that membrane localization, extensive post-translational modification, and CTD-cleavage were conserved features of the secretion system. The CTD cleavage site of 10 different proteins from 3 different species was determined and found to be similar to the cleavage site previously determined in P. gingivalis, suggesting that homologues of the C-terminal signal peptidase (PG0026) are responsible for the cleavage in these species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Porphyromonas gingivalis/metabolismo , Prevotella intermedia/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos , Bacteroidetes/metabolismo , Cadenas de Markov , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Filogenia , Señales de Clasificación de Proteína , Homología de Secuencia de Aminoácido
3.
Mol Biol Evol ; 29(1): 113-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21984067

RESUMEN

The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3ß3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.


Asunto(s)
Proteínas Portadoras/química , Cryptosporidium/genética , Mitocondrias/genética , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cryptosporidium/química , Evolución Molecular , Mitocondrias/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Alineación de Secuencia
4.
BMC Bioinformatics ; 13: 115, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22647087

RESUMEN

BACKGROUND: Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. RESULTS: PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). CONCLUSIONS: PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/estadística & datos numéricos , Programas Informáticos , Algoritmos , Interpretación Estadística de Datos
5.
J Biol Chem ; 286(31): 27706-17, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21636575

RESUMEN

Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.


Asunto(s)
Ácido Aspártico/metabolismo , Ciclo del Ácido Cítrico , Ácido Glutámico/biosíntesis , Leishmania mexicana/metabolismo , Ácido Succínico/metabolismo , Animales , Secuencia de Bases , Carbono/metabolismo , Cartilla de ADN , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética
6.
PLoS Pathog ; 6(3): e1000812, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20333239

RESUMEN

Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica.


Asunto(s)
Entamoeba histolytica/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Animales , Vesículas Citoplasmáticas/metabolismo , Entamoeba histolytica/genética , Genoma de Protozoos , Cadenas de Markov , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Filogenia , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética
7.
Proc Natl Acad Sci U S A ; 106(37): 15791-5, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717453

RESUMEN

Molecular machines drive essential biological processes, with the component parts of these machines each contributing a partial function or structural element. Mitochondria are organelles of eukaryotic cells, and depend for their biogenesis on a set of molecular machines for protein transport. How these molecular machines evolved is a fundamental question. Mitochondria were derived from an alpha-proteobacterial endosymbiont, and we identified in alpha-proteobacteria the component parts of a mitochondrial protein transport machine. In bacteria, the components are found in the inner membrane, topologically equivalent to the mitochondrial proteins. Although the bacterial proteins function in simple assemblies, relatively little mutation would be required to convert them to function as a protein transport machine. This analysis of protein transport provides a blueprint for the evolution of cellular machinery in general.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Bacterianas/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
8.
Mol Biol Evol ; 26(9): 1941-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19531743

RESUMEN

The identification of mitosomes in Giardia generated significant debate on the evolutionary origin of these organelles, whether they were highly reduced mitochondria or the product of a unique endosymbiotic event in an amitochondrial organism. As the protein import pathway is a defining characteristic of mitochondria, we sought to discover a TOM (translocase in the outer mitochondrial membrane) complex in Giardia. A Hidden Markov model search of the Giardia genome identified a Tom40 homologous sequence (GiTom40), where Tom40 is the protein translocation channel of the TOM complex. The GiTom40 protein is located in the membrane of mitosomes in a approximately 200-kDa TOM complex. As Tom40 was derived in the development of mitochondria to serve as the protein import channel in the outer membrane, its presence in Giardia evidences the mitochondrial ancestry of mitosomes.


Asunto(s)
Giardia lamblia/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Inmunoprecipitación , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Alineación de Secuencia
9.
Parasitology ; 137(9): 1303-13, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20158936

RESUMEN

Leishmania spp. are sandfly-transmitted protozoa parasites that cause a spectrum of diseases in humans. Many enzymes involved in Leishmania central carbon metabolism differ from their equivalents in the mammalian host and are potential drug targets. In this review we summarize recent advances in our understanding of Leishmania central carbon metabolism, focusing on pathways of carbon utilization that are required for growth and pathogenesis in the mammalian host. While Leishmania central carbon metabolism shares many features in common with other pathogenic trypanosomatids, significant differences are also apparent. Leishmania parasites are also unusual in constitutively expressing most core metabolic pathways throughout their life cycle, a feature that may allow these parasites to exploit a range of different carbon sources (primarily sugars and amino acids) rapidly in both the insect vector and vertebrate host. Indeed, recent gene deletion studies suggest that mammal-infective stages are dependent on multiple carbon sources in vivo. The application of metabolomic approaches, outlined here, are likely to be important in defining aspects of central carbon metabolism that are essential at different stages of mammalian host infection.


Asunto(s)
Carbono/metabolismo , Leishmania/metabolismo , Leishmaniasis/parasitología , Animales , Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Parásitos , Humanos , Espacio Intracelular/metabolismo , Leishmania/crecimiento & desarrollo , Estadios del Ciclo de Vida , Mitocondrias/metabolismo , Parásitos/metabolismo
10.
Eukaryot Cell ; 8(1): 19-26, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19028997

RESUMEN

Microsporidia are a group of highly adapted obligate intracellular parasites that are now recognized as close relatives of fungi. Their adaptation to parasitism has resulted in broad and severe reduction at (i) a genomic level by extensive gene loss, gene compaction, and gene shortening; (ii) a biochemical level with the loss of much basic metabolism; and (iii) a cellular level, resulting in lost or cryptic organelles. Consistent with this trend, the mitochondrion is severely reduced, lacking ATP synthesis and other typical functions and apparently containing only a fraction of the proteins of canonical mitochondria. We have investigated the mitochondrial protein import apparatus of this reduced organelle in the microsporidian Encephalitozoon cuniculi and find evidence of reduced and modified machinery. Notably, a putative outer membrane receptor, Tom70, is reduced in length but maintains a conserved structure chiefly consisting of tetratricopeptide repeats. When expressed in Saccharomyces cerevisiae, EcTom70 inserts with the correct topology into the outer membrane of mitochondria but is unable to complement the growth defects of Tom70-deficient yeast. We have scanned genomic data using hidden Markov models for other homologues of import machinery proteins and find evidence of severe reduction of this system.


Asunto(s)
Proteínas Fúngicas/metabolismo , Microsporidios/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Microsporidios/química , Microsporidios/genética , Mitocondrias/química , Mitocondrias/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
11.
FEMS Microbiol Rev ; 32(6): 995-1009, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18759741

RESUMEN

The assembly of beta-barrel proteins into membranes is a fundamental process that is essential in Gram-negative bacteria, mitochondria and plastids. Our understanding of the mechanism of beta-barrel assembly is progressing from studies carried out in Escherichia coli and Neisseria meningitidis. Comparative sequence analysis suggests that while many components mediating beta-barrel protein assembly are conserved in all groups of bacteria with outer membranes, some components are notably absent. The Alphaproteobacteria in particular seem prone to gene loss and show the presence or absence of specific components mediating the assembly of beta-barrels: some components of the pathway appear to be missing from whole groups of bacteria (e.g. Skp, YfgL and NlpB), other proteins are conserved but are missing characteristic domains (e.g. SurA). This comparative analysis is also revealing important structural signatures that are vague unless multiple members from a protein family are considered as a group (e.g. tetratricopeptide repeat (TPR) motifs in YfiO, beta-propeller signatures in YfgL). Given that the process of the beta-barrel assembly is conserved, analysis of outer membrane biogenesis in Alphaproteobacteria, the bacterial group that gave rise to mitochondria, also promises insight into the assembly of beta-barrel proteins in eukaryotes.


Asunto(s)
Alphaproteobacteria/química , Alphaproteobacteria/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Alphaproteobacteria/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Transporte de Proteínas , Alineación de Secuencia
12.
Curr Biol ; 16(3): 221-9, 2006 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-16461275

RESUMEN

BACKGROUND: Mitochondria evolved from intracellular bacterial symbionts. Establishing mitochondria as organelles required a molecular machine to import proteins across the mitochondrial outer membrane. This machinery, the TOM complex, is composed of at least seven component parts, and its creation and evolution represented a sizeable challenge. Although there is good evidence that a core TOM complex, composed of three subunits, was established in the protomitochondria, we suggest that the receptor component of the TOM complex arose later in the evolution of this machine. RESULTS: We have solved by nuclear magnetic resonance the structure of the presequence binding receptor from the TOM complex of the plant Arabidopsis thaliana. The protein fold suggests that this protein, AtTom20, belongs to the tetratricopeptide repeat (TPR) superfamily, but it is unusual in that it contains insertions lengthening the helices of each TPR motif. Peptide titrations map the presequence binding site to a groove of the concave surface of the receptor. In vitro functional assays and peptide titrations suggest that the plant Tom20 is functionally equivalent to fungal and animal Tom20s. CONCLUSIONS: Comparison of the sequence and structure of Tom20 from plants and animals suggests that these two presequence binding receptors evolved from two distinct ancestral genes following the split of the animal and plant lineages. The need to bind equivalent mitochondrial targeting sequences and to make similar interactions within an equivalent protein translocation machine has driven the convergent evolution of two distinct proteins to a common structure and function.


Asunto(s)
Arabidopsis/genética , Proteínas Portadoras/genética , Evolución Molecular , Mitocondrias/genética , Modelos Moleculares , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Biología Computacional , Componentes del Gen , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Biochem J ; 409(2): 377-87, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17894549

RESUMEN

Mitochondria were derived from intracellular bacteria and the mitochondrial intermembrane space is topologically equivalent to the bacterial periplasm. Both compartments contain ATP-independent chaperones involved in the transport of hydrophobic membrane proteins. The mitochondrial TIM (translocase of the mitochondrial inner membrane) 10 complex and the periplasmic chaperone SurA were examined in terms of evolutionary relation, structural similarity, substrate binding specificity and their function in transporting polypeptides for insertion into membranes. The two chaperones are evolutionarily unrelated; structurally, they are also distinct both in their characteristics, as determined by SAXS (small-angle X-ray scattering), and in pairwise structural comparison using the distance matrix alignment (DALILite server). Despite their structural differences, SurA and the TIM10 complex share a common binding specificity in Pepscan assays of substrate proteins. Comprehensive analysis of the binding on a total of 1407 immobilized 13-mer peptides revealed that the TIM10 complex, like SurA, does not bind hydrophobic peptides generally, but that both chaperones display selectivity for peptides rich in aromatic residues and with net positive charge. This common binding specificity was not sufficient for SurA to completely replace TIM10 in yeast cells in vivo. In yeast cells lacking TIM10, when SurA is targeted to the intermembrane space of mitochondria, it binds translocating substrate proteins, but fails to completely transfer the substrate to the translocase in the mitochondrial inner membrane. We suggest that SurA was incapable of presenting substrates effectively to the primitive TOM (translocase of the mitochondrial outer membrane) and TIM complexes in early mitochondria, and was replaced by the more effective small Tim chaperone.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Biblioteca de Péptidos , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Transporte de Proteínas , Relación Estructura-Actividad , Especificidad por Sustrato
14.
BMC Bioinformatics ; 8: 419, 2007 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-17963529

RESUMEN

BACKGROUND: Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. RESULTS: A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. CONCLUSION: We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.


Asunto(s)
Algoritmos , Inteligencia Artificial , Cromatografía de Gases y Espectrometría de Masas/métodos , Perfilación de la Expresión Génica/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Mapeo Peptídico/métodos
15.
Trends Parasitol ; 23(8): 368-75, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17606406

RESUMEN

Leishmania amastigotes primarily proliferate within macrophages in the mammalian host. Genome-based metabolic reconstructions, combined with biochemical, reverse genetic and mRNA or protein profiling studies are providing new insights into the metabolism of this intracellular stage. We propose that the complex nutritional requirements of amastigotes have contributed to the tropism of these parasites for the amino acid-rich phagolysosome of macrophages. Amastigote metabolism in this compartment is robust because many metabolic mutants are capable of either growing normally or persisting long term in susceptible animals. New approaches for measuring amastigote metabolism in vivo are discussed.


Asunto(s)
Leishmania/metabolismo , Macrófagos/parasitología , Proteínas de Transporte de Membrana/metabolismo , Fagosomas/metabolismo , Animales , Transporte Biológico , División Celular , Expresión Génica , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Humanos , Leishmania/citología
16.
J Mol Biol ; 358(4): 1010-22, 2006 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-16566938

RESUMEN

In fungi and animals the translocase in the outer mitochondrial membrane (TOM complex) consists of multiple components including the receptor subunit Tom70. Genome sequence analyses suggest no Tom70 receptor subunit exists in plants or protozoans, raising questions about its ancestry, function and the importance of its activity. Here we characterise the relationships within the Tom70 family of proteins. We find that in both fungi and animals, a conserved domain structure exists within the Tom70 family, with a transmembrane segment followed by 11 tetratricopeptide repeat motifs organised in three distinct domains. The C-terminal domain of Tom70 is highly conserved, and crucial for the import of hydrophobic substrate proteins, including those with and those without N-terminal presequences. Tom70 likely arose after fungi and animals diverged from other eukaryote lineages including plants, and subsequent gene duplication gave rise to a paralogue specific to the Saccharomyces group of yeasts. In animals and in fungi, Tom70 plays a fundamental role in the import of precursor proteins, by assisting relatively hydrophobic regions of substrate proteins into the translocation channel in the outer mitochondrial membrane. Proteins that function equivalently to Tom70 may have arisen independently in plants and protists.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , ADN/genética , ADN de Hongos/genética , Evolución Molecular , Técnicas In Vitro , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Proteins ; 64(4): 1024-45, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16783790

RESUMEN

Transthyretin (TTR) is a tetrameric protein involved in the distribution of thyroid hormones in vertebrates. The amino acid sequence of TTR is highly conserved across vertebrates. Hypothetical TTR-like proteins (TLPs) were inferred from the identification of genes in nonvertebrate species. Here, we identified five motifs defining TLPs and three motifs defining both TTRs and TLPs. These motifs were mapped onto structurally conserved and functionally important regions of TTRs. These motifs were used to build hidden Markov models for accurate identification of TLPs in other organisms. TLPs were divided into three main groups based on their N-terminal regions. Most TLPs are cytosolic, but in plants and slime mold, we predict they are peroxisomal. We verified that the TLPs from enterobacteria were periplasmic. We demonstrated that TLP genes are expressed in a bacterium (E. coli), an invertebrate animal (C. elegans), and a plant (A. thaliana). These TLPs have similar subunit molecular weights to TTRs, are tetramers, and are predicted to have similar three-dimensional (3D) structures to TTRs, but do not bind thyroid hormones or similar ligands. We suggest that like TTRs, the N-terminal and C-terminal regions of TLPs are integral in defining the function of TLPs in nonvertebrate species and that the TLP gene duplicated in primitive vertebrates to produce the TTR gene. TLP/TTR has retained its overall structure, but changed function and localization during evolution in bacteria, invertebrates, plants, and vertebrates.


Asunto(s)
Evolución Molecular , Prealbúmina/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Escherichia coli/genética , Humanos , Cadenas de Markov , Proteínas de la Membrana/genética , Prealbúmina/química , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
J Mol Biol ; 347(1): 81-93, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15733919

RESUMEN

Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.


Asunto(s)
Conformación Proteica , Isoformas de Proteínas , Receptores Citoplasmáticos y Nucleares , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Molecular , Humanos , Cadenas de Markov , Proteínas de Transporte de Membrana Mitocondrial , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/clasificación , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
Int J Parasitol ; 36(14): 1499-514, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17011565

RESUMEN

The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.


Asunto(s)
Leishmania major/genética , Proteínas Mitocondriales/genética , Secuencia de Aminoácidos , Animales , División Celular/genética , Eliminación de Gen , Genoma de Protozoos/genética , Kinetoplastida/química , Kinetoplastida/genética , Kinetoplastida/ultraestructura , Leishmania major/química , Leishmania major/ultraestructura , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/metabolismo , Estadios del Ciclo de Vida , Cadenas de Markov , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Rastreo/métodos , Mitocondrias/química , Mitocondrias/genética , Membranas Mitocondriales/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Trypanosoma/química , Trypanosoma/genética , Trypanosoma/ultraestructura , Virulencia/genética
20.
Biochem Mol Biol Educ ; 34(1): 1-4, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21638623

RESUMEN

This article describes the experience of teaching structural bioinformatics to third year undergraduate students in a subject titled Biomolecular Structure and Bioinformatics. Students were introduced to computer programming and used this knowledge in a practical application as an alternative to the well established Internet bioinformatics approach that relies on access to the Internet and biological databases. This was an ambitious approach considering that the students mostly had a biological background. There were also time constraints of eight lectures in total and two accompanying practical sessions. The main challenge was that students had to be introduced to computer programming from a beginner level and in a short time provided with enough knowledge to independently solve a simple bioinformatics problem. This was accomplished with a problem directly relevant to the rest of the subject, concerned with the structure-function relationships and experimental techniques for the determination of macromolecular structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA