Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurochem ; 142(6): 948-961, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28722750

RESUMEN

Members of the protein kinase D (PKD) family of serine/threonine kinases are known to exert diverse roles in neuronal stress responses. Here, we show the transient activation and nuclear translocation of endogenous PKD upon oxidative stress induced by H2 O2 treatment in primary neuronal cultures. Using pharmacological inhibition, we show that PKD activity protects neurons from oxidative stress-induced cell death. Although members of the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF kappaB) pathway were phosphorylated upon H2 O2 treatment, it was found that the neuronal response to oxidative stress is not executed through the nuclear translocation and activity of RelA. On the other hand, we demonstrate for the first time in neuronal cells, the association of green fluorescent protein-tagged kinase inactive PKD1 with mitochondrial membranes in vivo and the presence of PKD activity in the close vicinity of mitochondria in vitro. Our findings thus support the notion that the neuroprotective role of PKD is exerted independently from NF kappaB signaling and suggest a potential mitochondrial function for PKD in cultured neurons.

2.
J Biomed Mater Res A ; 107(10): 2350-2359, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31161618

RESUMEN

The long-term application of central nervous system implants is currently limited by the negative response of the brain tissue, affecting both the performance of the device and the survival of nearby cells. Topographical modification of implant surfaces mimicking the structure and dimensions of the extracellular matrix may provide a solution to this negative tissue response and has been shown to affect the attachment and behavior of both neurons and astrocytes. In our study, commonly used neural implant materials, silicon, and platinum were tested with or without nanoscale surface modifications. No biological coatings were used in order to only examine the effect of the nanostructuring. We seeded primary mouse astrocytes and hippocampal neurons onto four different surfaces: flat polysilicon, nanostructured polysilicon, and platinum-coated versions of these surfaces. Fluorescent wide-field, confocal, and scanning electron microscopy were used to characterize the attachment, spreading and proliferation of these cell types. In case of astrocytes, we found that both cell number and average cell spreading was significantly larger on platinum, compared to silicon surfaces, while silicon surfaces impeded glial proliferation. Nanostructuring did not have a significant effect on either parameter in astrocytes but influenced the orientation of actin filaments and glial fibrillary acidic protein fibers. Neuronal soma attachment was impaired on metal surfaces while nanostructuring seemed to influence neuronal growth cone morphology, regardless of surface material. Taken together, the type of metals tested had a profound influence on cellular responses, which was only slightly modified by nanopatterning.


Asunto(s)
Astrocitos/citología , Nanoestructuras/química , Neuronas/citología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Adhesión Celular/efectos de los fármacos , Recuento de Células , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Hipocampo/citología , Ratones , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Platino (Metal)/farmacología , Silicio/farmacología , Propiedades de Superficie
3.
Mol Biol Cell ; 28(2): 285-295, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27852895

RESUMEN

Ras and Rab interactor 1 (RIN1) is predominantly expressed in the nervous system. RIN1-knockout animals have deficits in latent inhibition and fear extinction in the amygdala, suggesting a critical role for RIN1 in preventing the persistence of unpleasant memories. At the molecular level, RIN1 signals through Rab5 GTPases that control endocytosis of cell-surface receptors and Abl nonreceptor tyrosine kinases that participate in actin cytoskeleton remodeling. Here we report that RIN1 controls the plasticity of cultured mouse hippocampal neurons. Our results show that RIN1 affects the morphology of dendritic protrusions and accelerates dendritic filopodial motility through an Abl kinase-dependent pathway. Lack of RIN1 results in enhanced mEPSC amplitudes, indicating an increase in surface AMPA receptor levels compared with wild-type neurons. We further provide evidence that the Rab5 GEF activity of RIN1 regulates surface GluA1 subunit endocytosis. Consequently loss of RIN1 blocks surface AMPA receptor down-regulation evoked by chemically induced long-term depression. Our findings indicate that RIN1 destabilizes synaptic connections and is a key player in postsynaptic AMPA receptor endocytosis, providing multiple ways of negatively regulating memory stabilization during neuronal plasticity.


Asunto(s)
Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/fisiología , Animales , Movimiento Celular/fisiología , Dendritas/metabolismo , Dendritas/fisiología , Endocitosis/fisiología , Hipocampo/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Seudópodos/metabolismo , Seudópodos/fisiología , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Transducción de Señal/fisiología , Membranas Sinápticas/fisiología , Proteínas de Unión al GTP rab5/metabolismo
4.
Sci Rep ; 7: 42014, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205624

RESUMEN

Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging.


Asunto(s)
Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Animales , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología
5.
Autophagy ; 12(2): 273-86, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26312549

RESUMEN

Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Naftoquinonas/farmacología , Fármacos Neuroprotectores/farmacología , Sulfonamidas/farmacología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Femenino , Células HeLa , Humanos , Longevidad/efectos de los fármacos , Masculino , Ratones , Naftoquinonas/química , Comportamiento de Nidificación/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Sulfonamidas/química , Pez Cebra
6.
J Cell Biol ; 210(5): 771-83, 2015 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-26304723

RESUMEN

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


Asunto(s)
Actinas/metabolismo , Espinas Dendríticas/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA2 Hipocampal/citología , Región CA2 Hipocampal/metabolismo , Supervivencia Celular , Células Cultivadas , Glicina/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Aprendizaje/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Transgénicos , Fármacos Neuromusculares Despolarizantes/farmacología , Técnicas de Placa-Clamp , Cloruro de Potasio/farmacología , Proteína Quinasa C/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA