Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Trop Med Health ; 52(1): 17, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331887

RESUMEN

BACKGROUND: Although the Philippines targets malaria elimination by 2030, it remains to be a disease that causes considerable morbidity in provinces that report malaria. Pregnant women residing in endemic areas are a vulnerable population, because in addition to the risk of developing severe malaria, their pregnancy is not followed through, and the outcome of their pregnancy is unknown. This study determined the utility of real-world data integrated with disease surveillance data set as real-world evidence of pregnancy and delivery outcomes in areas endemic for malaria in the Philippines. METHODS: For the period of 2015 to 2019, electronic data sets of malaria surveillance data and Ospital ng Palawan hospital admission log of pregnant women residing in the four selected barangays of Rizal, Palawan were merged using probabilistic linkage. The source data for record linkage were first and last names, birth date, and address as the mutual variable. The data used for characteristics of the pregnant women from the hospital data set were admission date, discharge date, admitting and final diagnosis and body weight on admission. From the malaria surveillance data these were date of consultation, and malaria parasite species. The Levenshtein distance formula was used for a fuzzy string-matching algorithm. Chi-square test, and Mann-Whitney U test were used to compare the means of the two data sets. RESULTS: The prevalence of pregnant women admitted to the tertiary referral hospital, Ospital ng Palawan, was estimated to be 8.34/100 overall, and 11.64/100 from the four study barangays; that of malaria during pregnancy patients was 3.45/100 and 2.64/100, respectively. There was only one true-positive matched case from 238 women from the hospital and 54 women from the surveillance data sets. The overall Levenshstein score was 97.7; for non-matched cases, the mean overall score was 36.6 (35.6-37.7). The matched case was a minor who was hospitalized for severe malaria. The outcome of her pregnancy was detected from neither data set but from village-based records. CONCLUSIONS: This proof-of-concept study demonstrated that probabilistic record linkage could match real-world data in the Philippines with further validation required. The study underscored the need for more integrated and comprehensive database to monitor disease intervention impact on pregnancy and its outcome in the Philippines.

2.
BMJ Glob Health ; 9(3)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548342

RESUMEN

BACKGROUND: Global tuberculosis (TB) drug resistance (DR) surveillance focuses on rifampicin. We examined the potential of public and surveillance Mycobacterium tuberculosis (Mtb) whole-genome sequencing (WGS) data, to generate expanded country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. METHODS: We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to 12 drugs and bias-corrected for model performance, outbreak sampling and rifampicin resistance oversampling. Validation leveraged a national DR survey conducted in South Africa. RESULTS: Mtb isolates from 29 countries (n=19 149) met sequence quality criteria. Global marginal genotypic resistance among mono-resistant TB estimates overlapped with the South African DR survey, except for isoniazid, ethionamide and second-line injectables, which were underestimated (n=3134). Among multidrug resistant (MDR) TB (n=268), estimates overlapped for the fluoroquinolones but overestimated other drugs. Globally pooled mono-resistance to isoniazid was 10.9% (95% CI: 10.2-11.7%, n=14 012). Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% (0.1-11%), n=111 and India 2.8% (0.08-9.4%), n=114). Given the recent interest in drugs enhancing ethionamide activity and their expected activity against isolates with resistance discordance between isoniazid and ethionamide, we measured this rate and found it to be high at 74.4% (IQR: 64.5-79.7%) of isoniazid-resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3964). CONCLUSIONS: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics, but public WGS data demonstrates oversampling of isolates with higher resistance levels than MDR. Nevertheless, our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug-susceptible TB in South Asia and indicate underutilisation of ethionamide in MDR treatment.


Asunto(s)
Antituberculosos , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Etionamida/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Genómica , Pruebas de Sensibilidad Microbiana , Aprendizaje Automático
3.
Sci Rep ; 14(1): 19602, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179783

RESUMEN

The Philippines is a high-incidence country for tuberculosis, with the increasing prevalence of multi- (MDR-TB) and extensively-drug (XDR-TB) resistant Mycobacterium tuberculosis strains posing difficulties to disease control. Understanding the genetic diversity of circulating strains can provide insights into underlying drug resistance mutations and transmission dynamics, thereby assisting the design of diagnostic tools, including those using next generation sequencing (NGS) platforms. By analysing genome sequencing data of 732 isolates from Philippines drug-resistance survey collections spanning from 2011 to 2019, we found that the majority belonged to lineages L1 (531/732; 72.5%) and L4 (European-American; n = 174; 23.8%), with the Manila strain (L1.2.1.2.1) being the most prominent (475/531). Approximately two-thirds of isolates were found to be at least MDR-TB (483/732; 66.0%), and potential XDR-TB genotypic resistance was observed (3/732; 0.4%), highlighting an emerging problem in the country. Genotypic resistance was highly concordant with laboratory drug susceptibility testing. By finding isolates with (near-)identical genomic variation, five major clusters containing a total of 114 isolates were identified: all containing either L1 or L4 isolates with at least MDR-TB resistance and spanning multiple years of collection. Closer inspection of clusters revealed transmission in prisons, some involving isolates with XDR-TB, and mutations linked to third-line drug bedaquiline. We have also identified previously unreported mutations linked to resistance for isoniazid, rifampicin, ethambutol, and fluoroquinolones. Overall, this study provides important insights into the genetic diversity, transmission and circulating drug resistance mutations of M. tuberculosis in the Philippines, thereby informing clinical and surveillance decision-making, which is increasingly using NGS platforms.


Asunto(s)
Antituberculosos , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Filipinas/epidemiología , Humanos , Secuenciación Completa del Genoma/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Genoma Bacteriano , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Filogenia , Pruebas de Sensibilidad Microbiana
5.
Tuberculosis (Edinb) ; 135: 102211, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35636102

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, remains a high burden disease and leading cause of mortality in the Philippines. Understanding the genetic diversity of M. tuberculosis strains in the population, including those that are multi-drug resistant (MDR), will aid in formulating strategies for effective TB control and prevention. By whole genome sequencing of M. tuberculosis isolates (n = 100) from patients of the Philippine 2016 National Tuberculosis Prevalence Survey, we sought to provide a baseline assessment of the genotypic and phylogenetic characteristics of the isolates. The majority (96/100) of the isolates were EAI2-Manila strain-type (lineage 1), with one Lineage 2 (Beijing), one Lineage 3 (CAS1), and two Lineage 4 (LAM9) strains. The EAI2-Manila clade was not significantly associated with patient's phenotypic and in silico drug resistance profile. Five (5/6) MDR-TB isolates predicted by in silico profiling were concordant with phenotypic drug resistance profile. Twenty-one mutations were identified in nine drug resistance-related genes, all of which have been reported in previous studies. Overall, the results from this study contribute to the growing data on the molecular characteristics of Philippine M. tuberculosis isolates, which can help in developing tools for rapid diagnosis of TB in the country, and thereby reducing the high burden of disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Filipinas/epidemiología , Filogenia , Prevalencia , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología
6.
Virus Evol ; 8(2): veac078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090771

RESUMEN

The Omicron severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant led to a dramatic global epidemic wave following detection in South Africa in November 2021. The BA.1 Omicron lineage was dominant and responsible for most SARS-CoV-2 outbreaks in countries around the world during December 2021-January 2022, while other Omicron lineages, including BA.2, accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only the BA.2 lineage underwent sustained transmission in the country, with an estimated emergence around 18 November 2021 (95 per cent highest posterior density: 6-28 November), while despite multiple introductions, BA.1 transmission remained limited. These results suggest that the Philippines was one of the earliest areas affected by BA.2 and reiterate the importance of whole genome sequencing for monitoring outbreaks.

7.
Sci Rep ; 9(1): 9305, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243306

RESUMEN

The Philippines has a high incidence of tuberculosis disease (TB), with an increasing prevalence of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) strains making its control difficult. Although the M. tuberculosis "Manila" ancient lineage 1 strain-type is thought to be prevalent in the country, with evidence of export to others, little is known about the genetic diversity of circulating strains. By whole genome sequencing (WGS) 178 isolates from the Philippines National Drug Resistance Survey, we found the majority (143/178; 80.3%) belonged to the lineage 1 Manila clade, with the minority belonging to lineages 4 (European-American; n = 33) and 2 (East Asian; n = 2). A high proportion were found to be multidrug-resistant (34/178; 19.1%), established through highly concordant laboratory drug susceptibility testing and in silico prediction methods. Some MDR-TB isolates had near identical genomic variation, providing potential evidence of transmission. By placing the Philippine isolates within a phylogeny of global M. tuberculosis (n > 17,000), we established that they are genetically similar to those observed outside the country, including a clade of Manila-like strain-types in Thailand. An analysis of the phylogeny revealed a set of ~200 SNPs that are specific for the Manila strain-type, and a subset can be used within a molecular barcode. Sixty-eight mutations known to be associated with 10 anti-TB drug resistance were identified in the Philippine strains, and all have been observed in other populations. Whilst nine putative streptomycin resistance conferring markers in gid (8) and rrs (1) genes appear to be novel and with functional consequences. Overall, this study provides an important baseline characterisation of M. tuberculosis genetic diversity for the Philippines, and will fill a gap in global datasets and aid the development of a nation-wide database for epidemiological studies and clinical decision making. Further, by establishing a molecular barcode for detecting Manila strains it will assist with the design of diagnostic tools for disease control activities.


Asunto(s)
Farmacorresistencia Bacteriana , Genoma Bacteriano , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/farmacología , Biología Computacional , Simulación por Computador , Humanos , Incidencia , Pruebas de Sensibilidad Microbiana , Filipinas/epidemiología , Filogenia , Prevalencia , Especificidad de la Especie , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA