Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37500887

RESUMEN

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Microglía , Enfermedad de Alzheimer/genética , Encéfalo
2.
Nature ; 582(7810): 89-94, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32483373

RESUMEN

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia1,2. The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration3-9. The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins5 before its non-canonical translation into neural-toxic dipeptide proteins3,4. The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation6-9. Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria10,11 protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Asunto(s)
Proteína C9orf72/genética , Microbioma Gastrointestinal/fisiología , Gliosis/microbiología , Gliosis/patología , Inflamación/genética , Inflamación/microbiología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Antibacterianos/farmacología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/genética , Autoinmunidad/inmunología , Movimiento Celular/efectos de los fármacos , Citocinas/inmunología , Trasplante de Microbiota Fecal , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Gliosis/genética , Gliosis/prevención & control , Inflamación/patología , Inflamación/prevención & control , Mutación con Pérdida de Función/genética , Masculino , Ratones , Microglía/inmunología , Microglía/microbiología , Microglía/patología , Médula Espinal/inmunología , Médula Espinal/microbiología , Tasa de Supervivencia
3.
Sci Transl Med ; 16(732): eadg7895, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295187

RESUMEN

A mutation in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Patients with ALS or FTD often develop autoimmunity and inflammation that precedes or coincides with the onset of neurological symptoms, but the underlying mechanisms are poorly understood. Here, we knocked out murine C9orf72 in seven hematopoietic progenitor compartments by conditional mutagenesis and found that myeloid lineage C9orf72 prevents splenomegaly, loss of tolerance, and premature mortality. Furthermore, we demonstrated that C9orf72 plays a role in lymphoid cells to prevent interleukin-17A (IL-17A) production and neutrophilia. Mass cytometry identified early and sustained elevation of the costimulatory molecule CD80 expressed on C9orf72-deficient mouse macrophages, monocytes, and microglia. Enrichment of CD80 was similarly observed in human spinal cord microglia from patients with C9ORF72-mediated ALS compared with non-ALS controls. Single-cell RNA sequencing of murine spinal cord, brain cortex, and spleen demonstrated coordinated induction of gene modules related to antigen processing and presentation and antiviral immunity in C9orf72-deficient endothelial cells, microglia, and macrophages. Mechanistically, C9ORF72 repressed the trafficking of CD80 to the cell surface in response to Toll-like receptor agonists, interferon-γ, and IL-17A. Deletion of Il17a in C9orf72-deficient mice prevented CD80 enrichment in the spinal cord, reduced neutrophilia, and reduced gut T helper type 17 cells. Last, systemic delivery of an IL-17A neutralizing antibody augmented motor performance and suppressed neuroinflammation in C9orf72-deficient mice. Altogether, we show that C9orf72 orchestrates myeloid costimulatory potency and provide support for IL-17A as a therapeutic target for neuroinflammation associated with ALS or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Células Endoteliales/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Interleucina-17 , Enfermedades Neuroinflamatorias
4.
Nat Aging ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907103

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by a progressive loss of motor function linked to degenerating extratelencephalic neurons/Betz cells (ETNs). The reasons why these neurons are selectively affected remain unclear. Here, to understand the unique molecular properties that may sensitize ETNs to ALS, we performed RNA sequencing of 79,169 single nuclei from cortices of patients and controls. In both patients and unaffected individuals, we found significantly higher expression of ALS risk genes in THY1+ ETNs, regardless of diagnosis. In patients, this was accompanied by the induction of genes involved in protein homeostasis and stress responses that were significantly induced in a wide collection of ETNs. Examination of oligodendroglial and microglial nuclei revealed patient-specific downregulation of myelinating genes in oligodendrocytes and upregulation of an endolysosomal reactive state in microglia. Our findings suggest that selective vulnerability of extratelencephalic neurons is partly connected to their intrinsic molecular properties sensitizing them to genetics and mechanisms of degeneration.

5.
Cell Rep ; 42(1): 111896, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36596304

RESUMEN

Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.


Asunto(s)
Señales (Psicología) , Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Homeodominio/metabolismo
6.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563689

RESUMEN

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Astrocitos/metabolismo , Células Madre , Feto , Células Madre Pluripotentes Inducidas/metabolismo
7.
Front Aging Neurosci ; 14: 1017299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408113

RESUMEN

Neurodegenerative disorders have been extremely challenging to treat with traditional drug-based approaches and curative therapies are lacking. Given continued progress in stem cell technologies, cell replacement strategies have emerged as concrete and potentially viable therapeutic options. In this review, we cover advances in methods used to differentiate human pluripotent stem cells into several highly specialized types of neurons, including cholinergic, dopaminergic, and motor neurons, and the potential clinical applications of stem cell-derived neurons for common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, and amyotrophic lateral sclerosis. Additionally, we summarize cellular differentiation techniques for generating glial cell populations, including oligodendrocytes and microglia, and their conceivable translational roles in supporting neural function. Clinical trials of specific cell replacement therapies in the nervous system are already underway, and several attractive avenues in regenerative medicine warrant further investigation.

8.
PLoS One ; 17(2): e0263262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176052

RESUMEN

Genome-wide screens that have viability as a readout have been instrumental to identify essential genes. The development of gene knockout screens with the use of CRISPR-Cas has provided a more sensitive method to identify these genes. Here, we performed an exhaustive genome-wide CRISPR/Cas9 phenotypic rescue screen to identify modulators of cytotoxicity induced by the pioneer transcription factor, DUX4. Misexpression of DUX4 due to a failure in epigenetic repressive mechanisms underlies facioscapulohumeral muscular dystrophy (FHSD), a complex muscle disorder that thus far remains untreatable. As the name implies, FSHD generally starts in the muscles of the face and shoulder girdle. Our CRISPR/Cas9 screen revealed no key effectors other than DUX4 itself that could modulate DUX4 cytotoxicity, suggesting that treatment efforts in FSHD should be directed towards direct modulation of DUX4 itself. Our screen did however reveal some rare and unexpected genomic events, that had an important impact on the interpretation of our data. Our findings may provide important considerations for planning future CRISPR/Cas9 phenotypic survival screens.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Proteínas de Homeodominio/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Musculares/patología , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/patología , Supervivencia Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Células Musculares/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Mioblastos/metabolismo
9.
Neuron ; 110(10): 1671-1688.e6, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294901

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron degeneration accompanied by aberrant accumulation and loss of function of the RNA-binding protein TDP43. Thus far, it remains unresolved to what extent TDP43 loss of function directly contributes to motor system dysfunction. Here, we employed gene editing to find whether the mouse ortholog of the TDP43-regulated gene STMN2 has an important function in maintaining the motor system. Both mosaic founders and homozygous loss-of-function Stmn2 mice exhibited neuromuscular junction denervation and fragmentation, resulting in muscle atrophy and impaired motor behavior, accompanied by an imbalance in neuronal microtubule dynamics in the spinal cord. The introduction of human STMN2 through BAC transgenesis was sufficient to rescue the motor phenotypes observed in Stmn2 mutant mice. Collectively, our results demonstrate that disrupting the ortholog of a single TDP43-regulated RNA is sufficient to cause substantial motor dysfunction, indicating that disruption of TDP43 function is likely a contributor to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Estatmina , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Homocigoto , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Estatmina/genética , Estatmina/metabolismo
10.
Stem Cell Reports ; 16(9): 2138-2148, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34416176

RESUMEN

Human pluripotent stem cells (hPSCs) have proven to be valuable tools for both drug discovery and the development of cell-based therapies. However, the long non-coding RNA XIST, which is essential for the establishment and maintenance of X chromosome inactivation, is repressed during culture, thereby causing erosion of dosage compensation in female hPSCs. Here, we report that the de novo DNA methyltransferases DNMT3A/3B are necessary for XIST repression in female hPSCs. We found that the deletion of both genes, but not the individual genes, inhibited XIST silencing, maintained the heterochromatin mark of H3K27me3, and did not cause global overdosage in X-linked genes. Meanwhile, DNMT3A/3B deletion after XIST repression failed to restore X chromosome inactivation. Our findings revealed that de novo DNA methyltransferases are primary factors responsible for initiating erosion of dosage compensation in female hPSCs, and XIST silencing is stably maintained in a de novo DNA-methylation-independent manner.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A/genética , Regulación de la Expresión Génica , Silenciador del Gen , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , Ensamble y Desensamble de Cromatina , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A/metabolismo , Compensación de Dosificación (Genética) , Epigénesis Genética , Perfilación de la Expresión Génica , Genes Ligados a X , Antecedentes Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Modelos Biológicos , Células Madre Pluripotentes/citología , ADN Metiltransferasa 3B
11.
Nat Neurosci ; 27(4): 607-609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38424325
12.
Nat Neurosci ; 22(2): 167-179, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643292

RESUMEN

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion. Notably, expression of STMN2, which encodes a microtubule regulator, declined after TDP-43 knockdown and TDP-43 mislocalization as well as in patient-specific motor neurons and postmortem patient spinal cord. STMN2 loss upon reduced TDP-43 function was due to altered splicing, which is functionally important, as we show STMN2 is necessary for normal axonal outgrowth and regeneration. Notably, post-translational stabilization of STMN2 rescued neurite outgrowth and axon regeneration deficits induced by TDP-43 depletion. We propose that restoring STMN2 expression warrants examination as a therapeutic strategy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Axones/metabolismo , Línea Celular , Regulación hacia Abajo , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Médula Espinal/metabolismo , Estatmina
13.
Acta Neuropathol Commun ; 6(1): 55, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973287

RESUMEN

A hexanucleotide (GGGGCC) repeat expansion in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Reduced expression of the C9ORF72 gene product has been proposed as a potential contributor to disease pathogenesis. Additionally, repetitive RNAs and dipeptide repeat proteins (DPRs), such as poly-GR, can be produced by this hexanucleotide expansion that disrupt a number of cellular processes, potentially contributing to neural degeneration. To better discern which of these mechanisms leads to disease-associated changes in patient brains, we analyzed gene expression data generated from the cortex and cerebellum. We found that transcripts encoding heat shock proteins (HSPs) regulated by the HSF1 transcription factor were significantly induced in C9ORF72-ALS/FTLD patients relative to both sporadic ALS/FTLD cases and controls. Treatment of human neurons with chemically synthesized DPRs was sufficient to activate a similar transcriptional response. Expression of GGGGCC repeats and also poly-GR in the brains of Drosophila lead to the upregulation of HSF1 and the same highly-conserved HSPs. Additionally, HSF1 was a modifier of poly-GR toxicity in Drosophila. Our results suggest that the expression of DPRs are associated with upregulation of HSF1 and activation of a heat shock response in C9ORF72-ALS/FTLD.


Asunto(s)
Encéfalo/metabolismo , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Degeneración Lobar Frontotemporal/genética , Regulación de la Expresión Génica/genética , Respuesta al Choque Térmico/fisiología , Animales , Encéfalo/patología , Estudios de Cohortes , Dipéptidos , Modelos Animales de Enfermedad , Drosophila , Ojo/patología , Femenino , Degeneración Lobar Frontotemporal/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo
14.
Cell Rep ; 23(8): 2509-2523, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791859

RESUMEN

Transcription factor programming of pluripotent stem cells (PSCs) has emerged as an approach to generate human neurons for disease modeling. However, programming schemes produce a variety of cell types, and those neurons that are made often retain an immature phenotype, which limits their utility in modeling neuronal processes, including synaptic transmission. We report that combining NGN2 programming with SMAD and WNT inhibition generates human patterned induced neurons (hpiNs). Single-cell analyses showed that hpiN cultures contained cells along a developmental continuum, ranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene and exhibited greater functionality, including NMDAR-mediated synaptic transmission. We conclude that utilizing single-cell and reporter gene approaches for selecting successfully programmed cells for study will greatly enhance the utility of hpiNs and other programmed neuronal populations in the modeling of nervous system disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica , Adulto , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diferenciación Celular , Células Cultivadas , Feto/citología , Regulación de la Expresión Génica , Humanos , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Proteínas Smad/metabolismo , Sinapsis/metabolismo , Factores de Tiempo , Transcripción Genética , Proteínas Wnt/metabolismo
16.
Cell Stem Cell ; 18(5): 597-610, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26971819

RESUMEN

Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns.


Asunto(s)
Reprogramación Celular/genética , Genoma , Especificidad de Órganos/genética , Animales , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Ratones , Modelos Biológicos
17.
Nat Cell Biol ; 18(4): 371-81, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974661

RESUMEN

Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) is typically inefficient and has been explained by elite-cell and stochastic models. We recently reported that B cells exposed to a pulse of C/EBPα (Bα' cells) behave as elite cells, in that they can be rapidly and efficiently reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell gene silencing and Brd4 for the activation of the pluripotency program. C/EBPα also promotes chromatin accessibility in pluripotent cells and upregulates Klf4 by binding to two haematopoietic enhancers. Bα' cells share many properties with granulocyte/macrophage progenitors, naturally occurring elite cells that are obligate targets for leukaemic transformation, whose formation strictly requires C/EBPα.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/genética , Reprogramación Celular/genética , Histona Demetilasas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Linfocitos B/metabolismo , Western Blotting , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Células HEK293 , Histona Demetilasas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/metabolismo , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA