Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(6): 1168-1185.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038747

RESUMEN

Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , Neoplasias Hepáticas/metabolismo , Activación de Macrófagos/fisiología , Proteínas Inhibidoras de STAT Activados/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Regulación hacia Abajo/fisiología , Femenino , Células HEK293 , Hepatocitos/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiología
2.
Cell ; 152(1-2): 304-15, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332762

RESUMEN

The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppresses TNFα-induced apoptosis. TNFα-treated Ikkß(-/-) mouse embryonic fibroblasts (MEFs) undergo apoptosis significantly faster than MEFs deficient in both RelA and cRel due to lack of inhibition of BAD by IKK. IKK phosphorylates BAD at serine-26 (Ser26) and primes it for inactivation. Elimination of Ser26 phosphorylation promotes BAD proapoptotic activity, thereby accelerating TNFα-induced apoptosis in cultured cells and increasing mortality in animals. Our results reveal that IKK inhibits TNFα-induced apoptosis through two distinct but cooperative mechanisms: activation of the survival factor NF-κB and inactivation of the proapoptotic BH3-only BAD protein.


Asunto(s)
Apoptosis , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Fibroblastos/citología , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Fosforilación , Serina/metabolismo , Proteína Letal Asociada a bcl/química , Proteína Letal Asociada a bcl/genética , Proteína bcl-X/metabolismo
3.
Nat Immunol ; 14(5): 461-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525087

RESUMEN

Inflammation is essential for host defense but can cause tissue damage and organ failure if unchecked. How the inflammation is resolved remains elusive. Here we report that the transcription factor Miz1 was required for terminating lipopolysaccharide (LPS)-induced inflammation. Genetic disruption of the Miz1 POZ domain, which is essential for the transactivation or repression activity of Miz1, resulted in hyperinflammation, lung injury and greater mortality in LPS-treated mice but a lower bacterial load and mortality in mice with Pseudomonas aeruginosa pneumonia. Loss of the Miz1 POZ domain prolonged the expression of proinflammatory cytokines. After stimulation, Miz1 was phosphorylated at Ser178, which was required for recruitment of the histone deacetylase HDAC1 to repress transcription of the gene encoding C/EBP-δ, an amplifier of inflammation. Our data provide a long-sought mechanism underlying the resolution of LPS-induced inflammation.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Lesión Pulmonar Aguda/genética , Animales , Citocinas/metabolismo , Represión Enzimática/genética , Histona Desacetilasa 1/metabolismo , Tolerancia Inmunológica , Inflamación/genética , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosforilación , Proteínas Inhibidoras de STAT Activados/genética , Infecciones por Pseudomonas/genética , Proteínas Represoras/genética , Activación Transcripcional/genética , Ubiquitina-Proteína Ligasas
4.
EMBO Rep ; 21(5): e48566, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239614

RESUMEN

Progenitor cells at the basal layer of skin epidermis play an essential role in maintaining tissue homeostasis and enhancing wound repair in skin. The proliferation, differentiation, and cell death of epidermal progenitor cells have to be delicately regulated, as deregulation of this process can lead to many skin diseases, including skin cancers. However, the underlying molecular mechanisms involved in skin homeostasis remain poorly defined. In this study, with quantitative proteomics approach, we identified an important interaction between KDF1 (keratinocyte differentiation factor 1) and IKKα (IκB kinase α) in differentiating skin keratinocytes. Ablation of either KDF1 or IKKα in mice leads to similar but striking abnormalities in skin development, particularly in skin epidermal differentiation. With biochemical and mouse genetics approach, we further demonstrate that the interaction of IKKα and KDF1 is essential for epidermal differentiation. To probe deeper into the mechanisms, we find that KDF1 associates with a deubiquitinating protease USP7 (ubiquitin-specific peptidase 7), and KDF1 can regulate skin differentiation through deubiquitination and stabilization of IKKα. Taken together, our study unravels an important molecular mechanism underlying epidermal differentiation and skin tissue homeostasis.


Asunto(s)
Diferenciación Celular , Células Epidérmicas/citología , Quinasa I-kappa B , Queratinocitos , Proteínas/metabolismo , Animales , Epidermis , Quinasa I-kappa B/genética , Ratones , Ubiquitinación
5.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269949

RESUMEN

ß-thalassemia is a hematologic disease that may be associated with significant morbidity and mortality. Increased expression of HBG1/2 can ameliorate the severity of ß-thalassemia. Compared to the unaffected population, some ß-thalassemia patients display elevated HBG1/2 expression levels in their red blood cells. However, the magnitude of up-regulation does not reach the threshold of self-healing, and thus, the molecular mechanism underlying HBG1/2 expression in the context of HBB-deficiency requires further elucidation. Here, we performed a multi-omics study examining chromatin accessibility, transcriptome, proteome, and phosphorylation patterns in the HBB homozygous knockout of the HUDEP2 cell line (HBB-KO). We found that up-regulation of HBG1/2 in HBB-KO cells was not induced by the H3K4me3-mediated genetic compensation response. Deletion of HBB in human erythroid progenitor cells resulted in increased ROS levels and production of oxidative stress, which led to an increased rate of apoptosis. Furthermore, in response to oxidative stress, slower cell cycle progression and proliferation were observed. In addition, stress erythropoiesis was initiated leading to increased intracellular HBG1/2 expression. This molecular model was also validated in the single-cell transcriptome of hematopoietic stem cells from ß-hemoglobinopathy patients. These findings further the understanding of HBG1/2 gene regulatory networks and provide novel clinical insights into ß-thalassemia phenotypic diversity.


Asunto(s)
Talasemia beta , Recuento de Eritrocitos , Eritrocitos/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Humanos
6.
Proc Natl Acad Sci U S A ; 115(45): E10682-E10691, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30337485

RESUMEN

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet count which can cause fatal hemorrhage. ITP patients with antiplatelet glycoprotein (GP) Ib-IX autoantibodies appear refractory to conventional treatments, and the mechanism remains elusive. Here we show that the platelets undergo apoptosis in ITP patients with anti-GPIbα autoantibodies. Consistent with these findings, the anti-GPIbα monoclonal antibodies AN51 and SZ2 induce platelet apoptosis in vitro. We demonstrate that anti-GPIbα antibody binding activates Akt, which elicits platelet apoptosis through activation of phosphodiesterase (PDE3A) and PDE3A-mediated PKA inhibition. Genetic ablation or chemical inhibition of Akt or blocking of Akt signaling abolishes anti-GPIbα antibody-induced platelet apoptosis. We further demonstrate that the antibody-bound platelets are removed in vivo through an apoptosis-dependent manner. Phosphatidylserine (PS) exposure on apoptotic platelets results in phagocytosis of platelets by macrophages in the liver. Notably, inhibition or genetic ablation of Akt or Akt-regulated apoptotic signaling or blockage of PS exposure protects the platelets from clearance. Therefore, our findings reveal pathogenic mechanisms of ITP with anti-GPIbα autoantibodies and, more importantly, suggest therapeutic strategies for thrombocytopenia caused by autoantibodies or other pathogenic factors.


Asunto(s)
Apoptosis , Plaquetas/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Púrpura Trombocitopénica Idiopática/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicoproteínas/inmunología , Humanos , Hígado/metabolismo , Macrófagos/metabolismo , Fagocitosis , Hidrolasas Diéster Fosfóricas/metabolismo , Púrpura Trombocitopénica Idiopática/enzimología , Transducción de Señal
7.
PLoS Pathog ; 13(7): e1006534, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28753655

RESUMEN

As a major diarrheagenic human pathogen, enterohemorrhagic Escherichia coli (EHEC) produce attaching and effacing (A/E) lesions, characterized by the formation of actin pedestals, on mammalian cells. A bacterial T3SS effector NleL from EHEC O157:H7 was recently shown to be a HECT-like E3 ligase in vitro, but its biological functions and host targets remain elusive. Here, we report that NleL is required to effectively promote EHEC-induced A/E lesions and bacterial infection. Furthermore, human c-Jun NH2-terminal kinases (JNKs) were identified as primary substrates of NleL. NleL-induced JNK ubiquitylation, particularly mono-ubiquitylation at the Lys 68 residue of JNK, impairs JNK's interaction with an upstream kinase MKK7, thus disrupting JNK phosphorylation and activation. This subsequently suppresses the transcriptional activity of activator protein-1 (AP-1), which modulates the formation of the EHEC-induced actin pedestals. Moreover, JNK knockdown or inhibition in host cells complements NleL deficiency in EHEC infection. Thus, we demonstrate that the effector protein NleL enhances the ability of EHEC to infect host cells by targeting host JNK, and elucidate an inhibitory role of ubiquitylation in regulating JNK phosphorylation.


Asunto(s)
Adhesión Bacteriana , Escherichia coli Enterohemorrágica/fisiología , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/genética , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Fosforilación , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
Mol Cell ; 42(5): 557-8, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658597

RESUMEN

In this issue of Molecular Cell,Choksi et al. (2011) report the identification of an NF-κB-independent ATIA (anti-TNFα-induced apoptosis)-Thioredoxin 2 axis that inhibits TNFα- and hypoxia-induced apoptosis through elimination of excessive reactive oxygen species directly.

9.
Proc Natl Acad Sci U S A ; 112(31): 9644-9, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195787

RESUMEN

The serine-threonine kinase Akt is a key regulator of cell proliferation and survival, glucose metabolism, cell mobility, and tumorigenesis. Activation of Akt by extracellular stimuli such as insulin centers on the interaction of Akt with PIP3 on the plasma membrane, where it is subsequently phosphorylated and activated by upstream protein kinases. However, it is not known how Akt is recruited to the plasma membrane upon stimulation. Here we report that ubiquitin-like protein 4A (Ubl4A) plays a crucial role in insulin-induced Akt plasma membrane translocation. Ubl4A knockout newborn mice have defective Akt-dependent glycogen synthesis and increased neonatal mortality. Loss of Ubl4A results in the impairment of insulin-induced Akt translocation to the plasma membrane and activation. Akt binds actin-filaments and colocalizes with actin-related protein 2 and 3 (Arp2/3) complex in the membrane ruffles and lamellipodia. Ubl4A directly interacts with Arp2/3 to accelerate actin branching and networking, allowing Akt to be in close proximity to the plasma membrane for activation upon insulin stimulation. Our finding reveals a new mechanism by which Akt is recruited to the plasma membrane for activation, thereby providing a missing link in Akt signaling.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Membrana Celular/enzimología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinas/metabolismo , Actinas/metabolismo , Animales , Animales Recién Nacidos , Membrana Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucógeno/biosíntesis , Proteínas Fluorescentes Verdes/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Ubiquitinas/deficiencia
10.
Proc Natl Acad Sci U S A ; 109(1): 191-6, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22184250

RESUMEN

The transcription factor zinc-finger protein Miz1 represses TNF-α-induced JNK activation and the repression is relieved upon TNF-α stimulation. However, the underlying mechanism is incompletely understood. Here we report that Miz1 interferes with the ubiquitin conjugating enzyme (E2) Ubc13 for binding to the RING domain of TNF-receptor associated factor 2 (TRAF2), thereby inhibiting the ubiquitin ligase (E3) activity of TRAF2 and suppressing TNF-α-induced JNK activation. Upon TNF-α stimulation, Miz1 rapidly undergoes K48-linked polyubiquitination at Lys388 and Lys472 residues and subsequent proteasomal degradation in a TRAF2-dependent manner. Replacement of Lysine 388 and Lysine 472 by arginines generates a nondegradable Miz1 mutant, which significantly suppresses TNF-α-induced JNK1 activation and inflammation. Thus, our results reveal a molecular mechanism by which the repression of TNF-α-induced JNK activation by Miz1 is de-repressed by its own site-specific ubiquitination and degradation, which may account for the temporal control of TNF-α-JNK signaling.


Asunto(s)
Inflamación/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación/efectos de los fármacos , Animales , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/deficiencia , Lisina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Proteínas Nucleares/deficiencia , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas Inhibidoras de STAT Activados/deficiencia , Proteolisis/efectos de los fármacos , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 107(44): 18886-91, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20956305

RESUMEN

The proper function of the bone morphogenic protein (BMP) pathway during embryonic development and organ maintenance requires its communication with other signaling pathways. Unlike the well-documented regulation of the BMP pathway by FGF/MAPK and Wnt/GSK3 signals, cross-talk between BMP/Smad and retinoic acid (RA)/RA receptor (RAR) pathways is poorly understood. Here, we show that RA represses BMP signal duration by reducing the level of phosphorylated Smad1 (pSmad1). Through its nuclear receptor-mediated transcription, RA enhances the interaction between pSmad1 and its ubiquitin E3 ligases, thereby promoting pSmad1 ubiquitination and proteasomal degradation. This regulation depends on the RA-increased Gadd45 expression and MAPK activation. During the neural development in chicken embryo, the RA/RAR pathway also suppresses BMP signaling to antagonize BMP-regulated proliferation and differentiation of neural progenitor cells. Furthermore, this cross-talk between RA and BMP pathways is involved in the proper patterning of dorsal neural tube of chicken embryo. Our results reveal a mechanism by which RA suppresses BMP signaling through regulation of pSmad1 stability.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal/fisiología , Proteína Smad1/metabolismo , Tretinoina/metabolismo , Ubiquitinación/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Embrión de Pollo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Tubo Neural/embriología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteína Smad1/genética , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(43): 18279-84, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19815509

RESUMEN

The proinflammatory cytokine TNF-alpha exerts its pleiotropic functions through activation of multiple downstream effectors, including JNK1. Yet, the underlying regulatory mechanism is incompletely understood. Here, we report that the transcription factor Myc-interacting zinc-finger protein 1 (Miz1) selectively suppresses TNF-alpha-induced JNK1 activation and cell death independently of its transcription activity. Proteomics analysis and yeast two-hybrid screening reveal that Miz1 is a JNK-associated protein. The TNF-alpha-induced activation of JNK1 is augmented in Miz1-deficient mouse embryonic fibroblasts (Miz1(-/-) MEFs), but the augmentation is abrogated by reintroduction of Miz1 or its transcription-deficient mutant. The regulation by Miz1 is highly specific, because it regulates TNF-alpha-induced TRAF2 K63-linked polyubiquitination. Neither JNK1 activation by IL-1beta or UV nor TNF-alpha-induced activation of p38, ERK, or IkappaB kinase complex is affected by the loss of Miz1. The TNF-alpha-induced cell death also is accelerated in Miz1(-/-) MEFs. Upon TNF-alpha stimulation, Miz1 is degraded rapidly by the proteasome, relieving its suppression on JNK1 activation. Thus, our results show that in addition to being a transcription factor Miz1 acts as a signal- and pathway-specific modulator or regulator that specifically regulates TNF-alpha-induced JNK1 activation and cell death.


Asunto(s)
Apoptosis , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Factores de Transcripción de Tipo Kruppel/química , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Inhibidoras de STAT Activados/deficiencia , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Dev Cell ; 10(3): 277-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16516830

RESUMEN

The intricate interplay between NF-kappaB and JNK determines TNF-alpha cytotoxicity. In a recent Cell paper, report that prolonged JNK1 activation promotes TNF-alpha killing via E3 ligase-mediated degradation of the caspase 8 inhibitor cFLIP(L). On the other hand, Ventura et al. (2006) show in their recent Molecular Cell paper that transient JNK activation suppresses TNF-alpha-induced cell death.


Asunto(s)
Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa , Animales , Apoptosis/fisiología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Activación Enzimática , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , FN-kappa B/metabolismo , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/toxicidad
14.
STAR Protoc ; 2(4): 100915, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34755118

RESUMEN

Neuronal loss resulting from progressive neurodegeneration is a major pathological feature of Alzheimer's disease (AD). Here, we present a protocol to detect neurodegeneration, neuronal apoptosis, and neuronal loss in 5XFAD mouse strain, which is a well-established model for interrogating the molecular mechanism of neuronal death in AD. This protocol describes the use of the neurodegenerative marker Fluro-Jade C, cleaved caspase-3 immunofluorescent staining and Nissl staining for the analysis of neurodegeneration and neuronal loss in 5XFAD mice. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo , Disfunción Cognitiva/patología , Histocitoquímica/métodos , Animales , Apoptosis/fisiología , Encéfalo/citología , Encéfalo/patología , Masculino , Ratones , Ratones Transgénicos , Microscopía
15.
iScience ; 24(9): 102942, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34430820

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. However, the underlying molecular mechanism is incompletely understood. Here we report that the pro-apoptotic protein BAD as a key regulator for neuronal apoptosis, neuroinflammation and Aß clearance in AD. BAD pro-apoptotic activity is significantly increased in neurons of AD patients and 5XFAD mice. Conversely, genetic disruption of Bad alleles restores spatial learning and memory deficits in 5XFAD mice. Mechanistically, phosphorylation and inactivation of BAD by neurotropic factor-activated Akt is abrogated in neurons under AD condition. Through reactive oxygen species (ROS)-oxidized mitochondrial DNA (mtDNA) axis, BAD also promotes microglial NLRP3 inflammasome activation, thereby skewing microglia toward neuroinflammatory microglia to inhibit microglial phagocytosis of Aß in AD mice. Our results support a model in which BAD contributes to AD pathologies by driving neuronal apoptosis and neuroinflammation but suppressing microglial phagocytosis of Aß, suggesting that BAD is a potential therapeutic target for AD.

16.
J Biol Chem ; 284(44): 30138-47, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19723624

RESUMEN

ERK plays an important role in chronic neuropathic pain. However, the underlying mechanism is largely unknown. Here we show that in chronic constriction injury-treated rat spinal cords, up-regulation of SIP30 (SNAP25-interacting protein 30), which is involved in the development and maintenance of chronic constriction injury-induced neuropathic pain, correlates with ERK activation and that the up-regulation of SIP30 is suppressed by intrathecal delivery of the MEK inhibitor U0126. In PC12 cells, up-regulation of SIP30 by nerve growth factor is also dependent on ERK activation. We found that there is an ERK-responsive region in the rat sip30 promoter. Activation of ERK promotes the recruitment of the transcription factor cyclic AMP-response element-binding protein to the sip30 gene promoter. Taken together, our results provide a potential downstream target of ERK activation-mediated neuropathic pain.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos , Animales , AMP Cíclico/genética , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Neuralgia/etiología , Células PC12 , Ratas , Elementos de Respuesta , Médula Espinal , Factores de Transcripción , Regulación hacia Arriba
17.
J Biol Chem ; 284(47): 32353-8, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19723627

RESUMEN

The male hormone androgen is a growth/survival factor for its target tissues or organs. Yet, the underlying mechanism is incompletely understood. Here, we report that androgen via p21 inhibits tumor necrosis factor alpha-induced JNK activation and apoptosis. Inhibition by androgen requires the transcription activity of androgen receptor (AR) and de novo protein synthesis. Androgen.AR induces expression of p21 that in turn inhibits tumor necrosis factor alpha-induced JNK and apoptosis. Furthermore, genetic interruption of p21 alleles abolishes the inhibition by androgen. Our results reveal a novel cross-talk between androgen x AR and JNK, thereby providing a molecular mechanism underlying the survival function of androgen.


Asunto(s)
Andrógenos/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Alelos , Apoptosis , Línea Celular Tumoral , Activación Enzimática , Humanos , Masculino , Modelos Biológicos , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transcripción Genética
18.
Elife ; 92020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33270017

RESUMEN

The resistance of synovial sublining macrophages to apoptosis has a crucial role in joint inflammation and destruction in rheumatoid arthritis (RA). However, the underlying mechanism is incompletely understood. Here we report that inactivation of the pro-apoptotic BCL-2 family protein BAD is essential for survival of synovial sublining macrophage in RA. Genetic disruption of Bad leads to more severe joint inflammation and cartilage and bone damage with reduced apoptosis of synovial sublining macrophages in collagen-induced arthritis (CIA) and TNFα transgenic (TNF-Tg) mouse models. Conversely, Bad3SA/3SA mice, in which BAD can no longer be inactivated by phosphorylation, are protected from collagen-induced arthritis. Mechanistically, phosphorylation-mediated inactivation of BAD specifically protects synovial sublining macrophages from apoptosis in highly inflammatory environment of arthritic joints in CIA and TNF-Tg mice, and in patients with RA, thereby contributing to RA pathology. Our findings put forward a model in which inactivation of BAD confers the apoptosis resistance on synovial sublining macrophages, thereby contributing to the development of arthritis, suggesting that BAD may be a potential therapeutic target for RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Macrófagos/fisiología , Osteoartritis/inducido químicamente , Proteína Letal Asociada a bcl/metabolismo , Adulto , Anciano , Animales , Artritis Reumatoide/genética , Trasplante de Médula Ósea , Colágeno/toxicidad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis/metabolismo , Proteína Letal Asociada a bcl/genética
19.
J Cell Biol ; 159(6): 1019-28, 2002 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-12486112

RESUMEN

The transcription factor nuclear factor-kappaB (NF-kappaB) regulates expression of a variety of genes involved in immune responses, inflammation, proliferation, and programmed cell death (apoptosis). Here, we show that in rat neonatal ventricular cardiomyocytes, activation of NF-kappaB is involved in the hypertrophic response induced by myotrophin, a hypertrophic activator identified from spontaneously hypertensive rat heart and cardiomyopathic human hearts. Myotrophin treatment stimulated NF-kappaB nuclear translocation and transcriptional activity, accompanied by IkappaB-alpha phosphorylation and degradation. Consistently, myotrophin-induced NF-kappaB activation was enhanced by wild-type IkappaB kinase (IKK) beta and abolished by the dominant-negative IKKbeta or a general PKC inhibitor, calphostin C. Importantly, myotrophin-induced expression of two hypertrophic genes (atrial natriuretic factor [ANF] and c-myc) and also enhanced protein synthesis were partially inhibited by a potent NF-kappaB inhibitor, pyrrolidine dithio-carbamate (PDTC), and calphostin C. Expression of the dominant-negative form of IkappaB-alpha or IKKbeta also partially inhibited the transcriptional activity of ANF induced by myotrophin. These findings suggest that the PKC-IKK-NF-kappaB pathway may play a critical role in mediating the myotrophin-induced hypertrophic response in cardiomyocytes.


Asunto(s)
Sustancias de Crecimiento/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocardio/citología , Miocardio/patología , FN-kappa B/metabolismo , Alcaloides , Animales , Animales Recién Nacidos , Benzofenantridinas , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Genes Dominantes , Hipertrofia , Proteínas I-kappa B/metabolismo , Inmunohistoquímica , Luciferasas/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Inhibidor NF-kappaB alfa , Naftalenos/metabolismo , Fenantridinas/metabolismo , Fosforilación , Unión Proteica , Proteína Quinasa C/metabolismo , Transporte de Proteínas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Factores de Tiempo , Transcripción Genética , Transfección
20.
Mol Cell Biol ; 26(4): 1223-34, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449637

RESUMEN

The mitogen-activated protein kinase p38 plays a critical role in inflammation, cell cycle progression, differentiation, and apoptosis. The activity of p38 is stimulated by a variety of extracellular stimuli, such as the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha), and subjected to regulation by other intracellular signaling pathways, including the cyclic AMP (cAMP) pathway. Yet the underlying mechanism by which cAMP inhibits p38 activation is unknown. Here we show that the induction of dynein light chain (DLC) by cAMP response element-binding protein (CREB) is required for cAMP-mediated inhibition of p38 activation. cAMP inhibits p38 activation via the protein kinase A-CREB pathway. The inhibition is mediated by the CREB target gene Dlc, whose protein product, DLC, interferes with the formation of the MKK3/6-p38 complex, thereby suppressing p38 phosphorylation activation by MKK3/6. The inhibition of p38 activation by cAMP leads to suppression of NF-kappaB activity and promotion of apoptosis in response to TNF-alpha. Thus, our results identify DLC as a novel inhibitor of the p38 pathway and provide a molecular mechanism by which cAMP suppresses p38 activation and promotes apoptosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Proteínas Portadoras/genética , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Dineínas , Activación Enzimática , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Células 3T3 NIH , Fosforilación , Interferencia de ARN , Ratas , Transcripción Genética , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA