Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Jpn J Clin Oncol ; 54(1): 89-96, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37721193

RESUMEN

OBJECTIVE: Numerous scattered case studies continue to demonstrate a strong correlation between acquired KRAS mutations and epidermal growth factor receptor-tyrosine kinase inhibitor resistance in non-small cell lung cancer. However, the comprehensive understanding of the KRAS pathway following the failure of epidermal growth factor receptor-tyrosine kinase inhibitor therapy remains limited. METHODS: We conducted a retrospective evaluation of the next generation sequencing data from 323 patients with advanced non-small cell lung cancer and EGFR-activating mutations after experiencing progression with epidermal growth factor receptor-tyrosine kinase inhibitor therapy. Our analysis specifically focused on the acquired changes to the KRAS gene. RESULTS: Among the 323 patients with advanced non-small cell lung cancer and EGFR-activating mutations who experienced resistance to epidermal growth factor receptor-tyrosine kinase inhibitor therapy, 14 individuals (4.3%) developed resistance due to acquired KRAS alterations. Of these 14 patients, 10 cases (71.4%) were due to KRAS missense mutations, 1 case (7.2%) was due to KRAS gene fusion and 3 cases (21.4%) were due to KRAS amplification. Notably, we identified one newly demonstrated KRAS gene fusion (KRAS and LMNTD1), one KRAS G13D and one KRAS K117N. The emergence of acquired KRAS alterations was often accompanied by novel mutations and high tumor mutation burden, with TP53, CNKN2A, PIK3CA, MYC, STK11, CDK4, BRCA2 and ERBB2 being the most frequently observed concurrent mutations. The median progression-free survival and overall survival for the 14 patients were 5.2 and 7.3 months, respectively. Acquired KRAS missense variants were associated with significantly worse progression-free survival compared with other KRAS variant subtypes (P < 0.028). CONCLUSIONS: This study provides significant evidence of the role of acquired KRAS variants in the development of resistance to epidermal growth factor receptor-tyrosine kinase inhibitor therapy. Our results contribute to the growing body of knowledge on the mutational profiles associated with resistance to epidermal growth factor receptor-tyrosine kinase inhibitor treatment. Furthermore, our study highlights the KRAS gene change as a significant mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitor therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Estudios Retrospectivos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas , Receptores ErbB/genética , Mutación , Resistencia a Antineoplásicos/genética
2.
Acta Pharmacol Sin ; 45(6): 1264-1275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38438582

RESUMEN

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Antineoplásicos , Tirosina Quinasa del Receptor Axl , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Ratones Desnudos , Compuestos Organofosforados , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas , Pirimidinas , Proteínas Tirosina Quinasas Receptoras , Animales , Femenino , Ratones , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Indoles , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , Mutación , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Tohoku J Exp Med ; 262(4): 269-276, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233113

RESUMEN

Osimertinib, a promising and approved third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is a standard strategy for EGFR-mutant non-small cell lung cancer (NSCLC) patients. However, developed resistance is unavoidable, which reduces its long-term effectiveness. In this study, RNA sequencing was performed to analyze differentially expressed genes (DEGs). The PrognoScan database and Gene Expression Profiling Interactive Analysis (GEPIA) were used to identify the key genes for clinical prognosis and gene correlation respectively. Protein expression was determined by western blot analysis. Cell viability assay and Ki67 staining were used to evaluate the effect of osimertinib on tumor cells. Finally, we screened out two hub genes, myelocytomatosis oncogene (Myc) and axis inhibition protein 1 (Axin1), upregulated in three osimertinib-resistant cell lines through RNA sequencing and bioinformatics analysis. Next, cell experiment confirmed that expression of C-MYC and AXIN1 were elevated in different EGFR mutant NSCLC cell lines with acquired resistance to osimertinib, compared with their corresponding parental cell lines. Furthermore, we demonstrated that AXIN1 upregulated the expression of C-MYC and mediated the acquired resistance of EGFR mutant NSCLC cells to osimertinib in vitro. In conclusion, AXIN1 affected the sensitivity of EGFR mutant NSCLC to osimertinib via regulating C-MYC expression in vitro. Targeting AXIN1/MYC signaling may be a potential new strategy for overcoming acquired resistance to osimertinib.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Proteína Axina , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Regulación Neoplásica de la Expresión Génica , Indoles , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-myc , Pirimidinas , Humanos , Acrilamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos/genética , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
4.
Carcinogenesis ; 42(6): 880-890, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33848354

RESUMEN

Autophagy and glycolysis are associated with osimertinib resistance. The energy complement and dynamic balance between these two processes make it difficult to block the process of drug resistance; breaking the complementary relationship between them may effectively overcome drug resistance. However, the exact mechanisms and the key players for regulating autophagy and glycolysis remain unclear. In this study, we demonstrate that autophagy and glycolysis levels in osimertinib-resistant cells were markedly higher than parental cells, and a dynamic balance existed between them. Inhibition of the class III phosphoinositide 3-kinase vacuolar protein sorting 34 (VPS34) with 3-methyladenine or small interfering RNA can not only inhibit abnormally enhanced autophagy but also inhibit glycolysis by inhibiting the location of epidermal growth factor receptor (EGFR) and the expression of hexokinase II. By demonstrating that VPS34 is the key player controlling autophagy and glycolysis simultaneously, our study may provide a new strategy for overcoming osimertinib resistance for treatment of EGFR-mutant non-small cell lung cancer patients.


Asunto(s)
Acrilamidas/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Compuestos de Anilina/farmacología , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Glucólisis , Neoplasias Pulmonares/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mutación , Células Tumorales Cultivadas
5.
Carcinogenesis ; 41(5): 600-610, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31504249

RESUMEN

Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor against T790M-mutant non-small cell lung cancer (NSCLC). Acquired resistance to osimertinib is a growing clinical challenge that is not fully understood. Endogenous electric fields (EFs), components of the tumor microenvironment, are associated with cancer cell migration and proliferation. However, the impact of EFs on drug efficiency has not been studied. In this study, we observed that EFs counteracted the effects of osimertinib. EFs of 100 mV/mm suppressed osimertinib-induced cell death and promoted cell proliferation. Transcriptional analysis revealed that the expression pattern induced by osimertinib was altered by EFs stimulation. KEGG analysis showed that differential expression genes were mostly enriched in PI3K-AKT pathway. Then, we found that osimertinib inhibited AKT phosphorylation, while EFs stimulation resulted in significant activation of AKT, which could override the effects generated by osimertinib. Importantly, pharmacological inhibition of PI3K/AKT by LY294002 diminished EF-induced activation of AKT and restored the cytotoxicity of osimertinib suppressed by EFs, which proved that AKT activation was essential for EFs to attenuate the efficacy of osimertinib. Furthermore, activation of AKT by EFs led to phosphorylation of forkhead box O3a (FOXO3a), and reduction in nuclear translocation of FOXO3a induced by osimertinib, resulting in decreased expression of Bim and attenuated cytotoxicity of osimertinib. Taken together, we demonstrated that EFs suppressed the antitumor activity of osimertinib through AKT/FOXO3a/Bim pathway, and combination of PI3K/AKT inhibitor with osimertinib counteracted the effects of EFs. Our findings provided preliminary data for therapeutic strategies to enhance osimertinib efficacy in NSCLC patients.


Asunto(s)
Acrilamidas/farmacología , Compuestos de Anilina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Núcleo Celular/metabolismo , Terapia por Estimulación Eléctrica/métodos , Proteína Forkhead Box O3/metabolismo , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Células Tumorales Cultivadas
6.
Nutr Cancer ; 66(4): 613-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24660968

RESUMEN

Lithocarpus polystachyus leaves have been used as tea beverage and folk medicine for healthy care in the Southwest of China. The purpose of this study is to investigate the anticancer activity of Lithocarpus polystachyus Rehd leaf aqueous extract (LPAE) and to explore the possible mechanism of its activity. Growth inhibition effects of LPAE breast cancer were tested in vitro and in vivo. The possible mechanism of its activity was analyzed with cell biological and molecular biological assays. After LPAE treatment, the proliferation and colony formation of cancer cells decreased; apoptotic cells increased; DNA fragmentations were evident; mRNA and protein expressions of PPARγ, Bax, and caspase-3 genes increased and expressions of cyclin D1 and Bcl-2 genes decreased; in vivo experiment, LPAE inhibited human beast cancer growth. The findings in this experimental study suggested that LPAE has potential cytotoxic and apoptotic effects on human breast cancer cells in vitro and inhibits the cancer growth in vivo, and its mechanism of activity might be associated with apoptosis induction of cancer cells through upregulation of the mRNA and protein expressions of PPARγ, Bax, and capase-3 genes and downregulation of the expressions of cyclin D1 and Bcl-2 genes.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fagaceae/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , China , Ciclina D1/genética , Ciclina D1/metabolismo , Fragmentación del ADN/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
7.
Cancer Lett ; 588: 216762, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38408602

RESUMEN

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Compuestos Organofosforados , Pirimidinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Compuestos de Anilina/farmacología , Sialiltransferasas/genética
8.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908857

RESUMEN

BACKGROUND: The dynamic interplay between tyrosine kinase inhibitors (TKIs) and the tumor immune microenvironment (TME) plays a crucial role in the therapeutic trajectory of non-small cell lung cancer (NSCLC). Understanding the functional dynamics and resistance mechanisms of TKIs is essential for advancing the treatment of NSCLC. METHODS: This study assessed the effects of short-term and long-term TKI treatments on the TME in NSCLC, particularly targeting epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations. We analyzed changes in immune cell composition, cytokine profiles, and key proteins involved in immune evasion, such as laminin subunit γ-2 (LAMC2). We also explored the use of aspirin as an adjunct therapy to modulate the TME and counteract TKI resistance. RESULTS: Short-term TKI treatment enhanced T cell-mediated tumor clearance, reduced immunosuppressive M2 macrophage infiltration, and downregulated LAMC2 expression. Conversely, long-term TKI treatment fostered an immunosuppressive TME, contributing to drug resistance and promoting immune escape. Differential responses were observed among various oncogenic mutations, with ALK-targeted therapies eliciting a stronger antitumor immune response compared with EGFR-targeted therapies. Notably, we found that aspirin has potential in overcoming TKI resistance by modulating the TME and enhancing T cell-mediated tumor clearance. CONCLUSIONS: These findings offer new insights into the dynamics of TKI-induced changes in the TME, improving our understanding of NSCLC challenges. The study underscores the critical role of the TME in TKI resistance and suggests that adjunct therapies, like aspirin, may provide new strategies to enhance TKI efficacy and overcome resistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Animales , Ratones , Resistencia a Antineoplásicos , Femenino , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Línea Celular Tumoral , Mutación
9.
iScience ; 27(7): 110150, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39040065

RESUMEN

Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.

10.
J Cell Biochem ; 114(9): 2061-70, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23553622

RESUMEN

Cancer stem cells (CSCs) are maintained by inflammatory cytokines and signaling pathways. Tanshinone IIA (Tan-IIA) possesses anti-cancer and anti-inflammatory activities. The purpose of this study is to confirm the growth inhibition effect of Tan-IIA on human breast CSCs growth in vitro and in vivo and to explore the possible mechanism of its activity. Human breast CSCs were enriched and expanded under serum-free mammosphere culture condition, and identified through mammosphere formation, toluidine blue staining, immunofluorescence staining, and flow cytometry analysis of stemness markers of CD44/CD24 and ALDH, and tumorigenecity in vivo; the growth inhibition effect of Tan-IIA on human breast CSCs in vitro were tested by cell proliferation and mammosphere formation assays; inflammatory signaling pathway related protein expression in response to Tan-IIA, IL-6, STAT3, phospho-STAT3 (Tyr705), NF-κBp65 in cytoplasm and nucleus and cyclin D1 were evaluated with Western blotting; the growth inhibition effect of Tan-IIA on human breast CSCs growth were tested in vivo. A useful model of human breast CSCs for researching and developing the agents targeting CSCs was established. After Tan-IIA treatment, cell proliferation and mammosphere formation of CSCs were decreased significantly; the expression levels of IL-6, STAT3, phospho-STAT3 (Tyr705), NF-κBp65 in nucleus and cyclin D1 proteins were decreased significantly; the tumor growth and mean tumor weight were reduced significantly. Tan-IIA has the potential to target and kill CSCs, and can inhibit human breast CSCs growth both in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways.


Asunto(s)
Abietanos/farmacología , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Transcripción STAT3/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Interleucina-6/genética , Isoenzimas/genética , Isoenzimas/metabolismo , FN-kappa B/genética , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
11.
Mol Cell Biochem ; 379(1-2): 7-18, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23543150

RESUMEN

Cancer stem cells (CSCs) are believed to be responsible for tumor metastasis, recurrence, and high mortality of cancer patients due to their high tumorigenicity resistance to chemo-radiotherapy. Morusin possesses anti-cancer activity through attenuation of NF-κB activity, which is up-regulated in cancer stem cells. The purpose of this study is to confirm the growth and migration inhibition effect of morusin on human cervical CSCs, and to clarify its partial mechanism of activity. Human cervical CSCs were enriched using non-adhesive culture system. Their stemness characteristics were identified with tumor sphere formation, self-renewal, toluidine blue staining, migration assays, RT-PCR analysis, and immunofluorescence staining of putative stem cell markers, Oct4, SOX2, and ALDH1; the epithelial-to-mesenchymal (EMT) transition markers and relevant transcription factors were evaluated with Western blotting. The growth and migration inhibition effects of morusin on human cervical CSCs were tested by cell proliferation, tumor sphere formation, and transwell assay; apoptotic death of human cervical CSCs in response to morusin was measured with DAPI staining, apoptotic DNA fragmentation; NF-κBp65, Bcl-2, Bax, and caspase-3 protein expressions were detected through Western blotting. Under this non-adhesive culture system, typical tumor spheres appeared within 5-7 days, the tumor sphere formation, self-renewal, and cell migration, expressions of putative stem cell markers, EMT markers, and relevant transcription factors of the tumor sphere cells were increased significantly. After morusin treatment, the proliferation, tumor sphere formation, and migration of human cervical CSCs were decreased significantly, DAPI-stained apoptotic cells increased, apoptotic DNA fragmentations formed evidently; the expression levels of NF-κBp65 and Bcl-2 decreased significantly, Bax, and caspase-3 increased significantly in a dose-dependent manner. Using the non-adhesive culture system, human cervical CSCs were enriched and expanded. Morusin has the potential to target and kill CSCs, and can inhibit human cervical growth and migration through NF-κB attenuation mediated apoptosis induction.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Células Madre Neoplásicas/fisiología , Factor de Transcripción ReIA/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Fragmentación del ADN , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal , Femenino , Expresión Génica , Células HeLa , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Factor de Transcripción ReIA/genética , Regulación hacia Arriba , Neoplasias del Cuello Uterino
12.
Exp Cell Res ; 318(19): 2417-26, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22906859

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant and aggressive primary brain tumor in humans, with a uniformly poor prognosis. Hypoxia is a predominant feature in GBM and its microenvironment; it is associated with the tumor growth, progression and resistance to conventional therapy of cancers. Hypoxia-inducible factors (HIFs) are the master regulators of the transcriptional response to hypoxia in tumor cells and their microenvironment. Numerous studies indicated that hypoxia and HIFs played pivotal roles in the initiation, progression, therapy resistance and recurrence of GBM and maintained the phenotype of glioma stem cells (GSCs), which makes the prognosis of GBM patients worse. This review summarized the current research advance of hypoxia and HIFs in GBM progression and therapeutic implications, which will provide a better understanding of the contribution of hypoxia and HIFs to GBM initiation and progression and highlight that HIFs might be taken as the attractive molecular target approaches for GBM therapeutics.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Portadoras/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Hipoxia de la Célula/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Ribonucleoproteínas Nucleares Pequeñas
13.
iScience ; 26(7): 107105, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416479

RESUMEN

The mechanisms of osimertinib resistance have not been well characterized. We conducted next-generation sequencing to recognize novel resistance mechanism and used cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models to evaluate the anti-proliferative effects of aspirin in vivo and in vitro. We observed that PIK3CG mutations led to acquired resistance to osimertinib in a patient and further confirmed that both PIK3CG and PIK3CA mutations caused osimertinib resistance. Mechanistically, the expression of PI3Kγ or PI3Kα was up-regulated after PIK3CG or PIK3CA lentivirus transfection, respectively, and which can be effectively suppressed by aspirin. Lastly, our results from in vivo studies indicate that aspirin can reverse osimertinib resistance caused by PIK3CG or PIK3CA mutations in both CDX and PDX models. Herein, we first confirmed that mutations in PIK3CG can lead to resistance to osimertinib, and the combined therapy may be a strategy to reverse PIK3CG/PIK3CA mutation-induced osimertinib resistance.

14.
Cell Death Discov ; 8(1): 221, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459209

RESUMEN

Lorlatinib is a promising third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) that has been approved for treating ALK-positive non-small-cell lung cancer (NSCLC) patients with previous ALK-TKI treatment failures. However, the inevitable emergence of acquired resistance limits its long-term efficacy. A more comprehensive understanding of the acquired resistance mechanisms to lorlatinib will enable the development of more efficacious therapeutic strategies. The efficacy of chloroquine (CQ) in combination with lorlatinib in ALK-positive NSCLC cells in vitro and in vivo was assessed using CCK-8, colony formation, immunofluorescence staining, flow cytometry analysis, western blot analysis, and xenograft implantation. Here, we show that lorlatinib induced apoptosis and protective autophagy in ALK-positive NSCLC cells. However, the protective autophagy can gradually lead to decreased cytotoxicity of loratinib in ALK-positive NSCLC cells. Meanwhile, we found that the combination of lorlatinib and CQ, an inhibitor of autophagy, inhibited autophagy and promoted apoptosis both in vitro and in vivo, which sensitized cells to lorlatinib through the dephosphorylation of Foxo3a and promoted nuclear translocation, then activation of Foxo3a/Bim axis. Taken together, our results suggest that inhibition of protective autophagy might be a therapeutic target for delaying the occurrence of acquired resistance to lorlatinib in ALK-positive NSCLC patients.

15.
Front Bioeng Biotechnol ; 10: 983677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159657

RESUMEN

Multiple component integration to achieve both therapy and diagnosis in a single theranostic nanosystem has aroused great research interest in the medical investigator. This study aimed to construct a novel theranostic nanoplatform ferrite and ceria co-engineered mesoporous silica nanoparticles (Fe/Ce-MSN) antioxidant agent though a facile metal Fe/Ce-codoping approach in the MSN framework. The resulted Fe3+-incorporated ceria-based MSN nanoparticles possessing a higher Ce3+-to-Ce4+ ratio than those revealed by ceria-only nanoparticles. The as-prepared Fe/Ce-MSN nanoparticles exhibited an excellent efficiency in scavenging reactive oxygen species (ROS), which is attributed to improving the superoxide dismutase (SOD) mimetics activity by increasing Ce3+ content and maintaining a higher activity of catalase (CAT) mimetics via including ferrite ion in nanoparticles. The fast Fe/Ce-MSN biodegradation, which is sensitive to the mild acidic microenvironment of inflammation, can accelerate Fe/Ce ion release, and the freed Fe ions enhanced T2-weighted magnetic resonance imaging in the inflammation site. PEGylated Fe/Ce-MSN nanoparticles in vitro cell models significantly attenuated ROS-induced inflammation, oxidative stress, and apoptosis in macrophages by scavenging overproduced intracellular ROS. More importantly, Fe/Ce-MSN-PEG NPs exhibited significant anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) levels in vitro. Additionally, it can promote the macrophages polarization of pro-inflammatory M1 phenotype towards an anti-inflammatory M2 phenotype. Thus, the novel pH-responsive theranostic nanoplatform shows great promise for inflammation and oxidative stress-associated disease treatment.

16.
Commun Biol ; 5(1): 155, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197546

RESUMEN

Osimertinib, a 3rd generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line standard-of-care for EGFR-mutant non-small cell lung cancer (NSCLC) patients, while acquired drug resistance will inevitably occur. Interleukin-6 (IL-6) is a keystone cytokine in inflammation and cancer, while its role in osimertinib efficacy was unknown. Here we show that clinically, plasma IL-6 level predicts osimertinib efficacy in EGFR mutant NSCLC patients. Highly increased IL-6 levels are found in patients with acquired resistance to osimertinib. Addition of IL-6 or exogenous overexpression of IL-6 directly induces osimertinib resistance. Proteomics reveals LAMA5 (Laminin α5) and PTK2, protein tyrosine kinase 2, also called focal adhesion kinase (FAK), are activated in osimertinib-resistant cells, and siRNA knockdown of LAMA5 or PTK2 reverses IL-6-mediated osimertinib resistance. Next, using a large-scale compound screening, we identify ibrutinib as a potent inhibitor of IL-6 and Laminin α5/FAK signaling, which shows synergy with osimertinib in osimertinib-resistant cells with high IL-6 levels, but not in those with low IL-6 levels. In vivo, this combination inhibits tumor growth of xenografts bearing osimertinib-resistant tumors. Taken together, we conclude that Laminin α5/FAK signaling is responsible for IL-6-induced osimertinib resistance, which could be reversed by combination of ibrutinib and osimertinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Interleucina-6 , Laminina , Neoplasias Pulmonares , Acrilamidas , Adenina/análogos & derivados , Compuestos de Anilina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Interleucina-6/sangre , Laminina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Piperidinas
17.
Front Mol Biosci ; 9: 780200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281267

RESUMEN

Background: Non-small-cell lung cancer (NSCLC) with STK11 mutation showed primary resistance to immune checkpoint inhibitors (ICIs). The glucose-lowering drug metformin exerted anti-cancer effect and enhanced efficacy of chemotherapy in NSCLC with KRAS/STK11 co-mutation, yet it is unknown whether metformin may enhance ICI efficacy in STK11 mutant NSCLC. Methods: We studied the impact of metformin on ICI efficacy in STK11 mutant NSCLC in vitro and in vivo using colony formation assay, cell viability assay, Ki67 staining, ELISA, CRISPR/Cas9-mediated knockout, and animal experiments. Results: Through colony formation assay, Ki67 incorporation assay, and CCK-8 assay, we found that metformin significantly enhanced the killing of H460 cells and A549 cells by T cells. In NOD-SCID xenografts, metformin in combination with PD-1 inhibitor pembrolizumab effectively decreased tumor growth and increased infiltration of CD8+ T cells. Metformin enhanced stabilization of STING and activation of its downstream signaling pathway. siRNA-mediated knockdown of STING abolished the effect of metformin on T cell-mediated killing of tumor cells. Next, we found that CRISPR/Cas9-mediated knockout of the scaffold protein AXIN-1 abolished the effect of metformin on T cell-mediated killing and STING stabilization. Immunoprecipitation and confocal macroscopy revealed that metformin enhanced the interaction and colocalization between AXIN-1 and STING. Protein-protein interaction modeling indicated that AXIN-1 may directly bind to STING at its K150 site. Next, we found that metformin decreased K48-linked ubiquitination of STING and inhibited the interaction of E3-ligand RNF5 and STING. Moreover, in AXIN-1 -/- H460 cells, metformin failed to alter the interaction of RNF5 and STING. Conclusion: Metformin combining PD-1 inhibitor enhanced anti-tumor efficacy in STK11 mutant lung cancer through inhibition of RNF5-mediated K48-linked ubiquitination of STING, which was dependent on AXIN-1.

18.
Thorac Cancer ; 13(22): 3162-3173, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36193794

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) has made a breakthrough as an early biomarker in operable early-stage cancer patients. However, the function of ctDNA combined with cell-free DNA (cfDNA) as a predictor in advanced non-small cell lung cancer (NSCLC) remains unknown. Here, we explored its potential as a biomarker for predicting the efficacy of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients with advanced NSCLC. METHODS: A retrospective analysis was undertaken. Plasma collected from 51 patients with advanced NSCLC prior to and serially after starting treatment with EGFR-TKIs was analyzed by next-generation sequencing (NGS). The performance of ctDNA, cfDNA, and combining ctDNA with cfDNA were evaluated for their ability to predict survival outcomes. RESULTS: Patients with early undetectable ctDNA and increasing cfDNA had a markedly better progression-free survival (PFS) (p < 0.001) and overall survival (OS) (p = 0.001) than those with early detectable ctDNA and decreasing cfDNA. Patients with early ctDNA clearance were more likely to have the ctDNA persistent clearance (p = 0.006). The early clearance rate of ctDNA in the normal carcinoembryonic antigen (CEA) group was significantly higher than in the low and high groups (p = 0.028). Patients with greater CEA decline had a higher early clearance rate of ctDNA than those with minor CEA change (p = 0.016). CONCLUSIONS: We based this study on ctDNA and cfDNA, explored its prognostic predictive ability, and combined CEA to monitor EGFR-TKI efficacy. This study may provide new perspectives and insights into the precise treatment strategies for NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Antígeno Carcinoembrionario , Receptores ErbB/genética , Estudios Retrospectivos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
19.
Thorac Cancer ; 12(23): 3184-3193, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34729938

RESUMEN

BACKGROUND: Activation of ALK leads to a high level of aerobic glycolysis related to crizotinib insensitivity in anaplastic lymphoma kinase-positive non-small cell lung cancer (ALK+ NSCLC). The strategy and mechanism of glycolysis inhibition in sensitizing ALK+ NSCLC cells to crizotinib requires further investigation. METHODS: The levels of glycolysis in H3122 and H2228 cells were evaluated through detection of glucose consumption and lactate production. MTT assay was used to explore the effects of glycolytic inhibitors on crizotinib sensitivity, and the potential mechanism of action were detected by colony formation, Ki67 incorporation assay, transwell assay, small interfering RNA technology and western blot analysis. RESULTS: ALK+ NSCLC cells exhibited significantly higher levels of glycolysis compared to ALK- NSCLC cells. Long-term exposure to crizotinib could decrease the sensitivity of ALK+ NSCLC cells to crizotinib via increasing the levels of glycolysis related to hexokinases II (HK2). Crizotinib in combination with glycolysis inhibitor 2-deoxy-D-glucose (2DG) synergistically inhibited proliferation, glycolysis, colony formation and invasion ability of ALK+ NSCLC cells. 2DG sensitization crizotinib might be associated with the inhibition of HK2-mediated glycolysis and P-ALK/AKT/mTOR signaling pathway in H3122 and H2228 cells. CONCLUSIONS: These results indicate that HK2-mediated glycolysis plays a crucial role in the increased tolerance of ALK+ NSCLC cells to crizotinib. 2DG may sensitize ALK+ NSCLC to crizotinib via suppression of HK2-mediated glycolysis and the AKT/mTOR signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Crizotinib/farmacología , Desoxiglucosa/farmacología , Glucólisis/efectos de los fármacos , Hexoquinasa/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Quinasa de Linfoma Anaplásico/genética , Antimetabolitos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Inhibidores de Proteínas Quinasas/farmacología
20.
Int J Gen Med ; 14: 347-356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33568935

RESUMEN

PURPOSE: To investigate the potential of maximum standardized uptake value (SUVmax) in predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients. METHODS: Clinical data of 311 NSCLC patients who had undergone both EGFR mutation test and 18F-FDG PET/CT scans between January 2013 and December 2017 at our hospital were retrospectively analyzed. Patients were sub-grouped by their origin of SUVmax. Univariate and multivariate analyses were performed to investigate the association between clinical factors and EGFR mutations. Receiver operating characteristic curve (ROC) analysis was performed to confirm the predictive value of clinical factors. In vitro experiments were performed to confirm the correlation between EGFR mutations and glycolysis. RESULTS: EGFR-mutant patients had higher SUVmax than the wild-type patients in both primary tumors and metastases. In the multivariate analysis, SUVmax, gender and histopathologic type were determined as independent predictors of EGFR mutation status for patients whose SUVmax were obtained from the primary tumors; while for patients whose SUVmax were obtained from the metastases, SUVmax, smoking status and histopathologic type were regarded as independent predictors. ROC analysis showed that SUVmax of the primary tumors (cut off >10.92), not of the metastases, has better predictive value than other clinical factors in predicting EGFR mutation status. The predict performance was improved after combined SUVmax with other independent predictors. In addition, our in vitro experiments demonstrated that lung cancer cells with EGFR mutations have higher aerobic glycolysis level than wild-type cells. CONCLUSION: SUVmax of the primary tumors has the potential to serve as a biomarker to predict EGFR mutation status in NSCLC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA